Summary

Nervus Vagus Stimulatie als een Tool om plasticiteit te induceren in Pathways Relevant voor Extinction Learning

Published: August 21, 2015
doi:

Summary

Nervus vagus stimulatie (NVS) heeft ontpopt als een instrument om gerichte synaptische plasticiteit induceren in de voorhersenen tot een reeks van gedragingen te wijzigen. Dit protocol beschrijft hoe de uitvoering van VNS aan de consolidatie van de angst uitsterven geheugen te vergemakkelijken.

Abstract

Extinction describes the process of attenuating behavioral responses to neutral stimuli when they no longer provide the reinforcement that has been maintaining the behavior. There is close correspondence between fear and human anxiety, and therefore studies of extinction learning might provide insight into the biological nature of anxiety-related disorders such as post-traumatic stress disorder, and they might help to develop strategies to treat them. Preclinical research aims to aid extinction learning and to induce targeted plasticity in extinction circuits to consolidate the newly formed memory. Vagus nerve stimulation (VNS) is a powerful approach that provides tight temporal and circuit-specific release of neurotransmitters, resulting in modulation of neuronal networks engaged in an ongoing task. VNS enhances memory consolidation in both rats and humans, and pairing VNS with exposure to conditioned cues enhances the consolidation of extinction learning in rats. Here, we provide a detailed protocol for the preparation of custom-made parts and the surgical procedures required for VNS in rats. Using this protocol we show how VNS can facilitate the extinction of conditioned fear responses in an auditory fear conditioning task. In addition, we provide evidence that VNS modulates synaptic plasticity in the pathway between the infralimbic (IL) medial prefrontal cortex and the basolateral complex of the amygdala (BLA), which is involved in the expression and modulation of extinction memory.

Introduction

Klassieke vreesconditionering verschaft een veelgebruikt diermodel om de biologische basis van angststoornissen bestuderen. Tijdens vreesconditionering, wordt een aversieve stimulus (de ongeconditioneerde stimulus, US, bijvoorbeeld een footshock) dat in combinatie met een neutrale stimulus, zoals een toon en / of een context (de geconditioneerde stimulus, CS). Tijdens vreesconditionering, worden associaties tussen het CS en de Verenigde Staten gevormd. Uiteindelijk zal de presentatie van de CS alleen lokt een angstreactie (de geconditioneerde reactie; CR). In angst extinctie wordt de CS herhaaldelijk gepresenteerd in afwezigheid van de VS, waardoor de CR geleidelijk afnemen 1. Aldus uitsterven van geconditioneerde angst is een actief proces waarbij angstige gedragsreacties neutrale stimuli worden verzwakt wanneer ze niet meer aversieve resultaten te voorspellen. Uitsterven van geconditioneerde reacties vereist consolidatie van nieuwe herinneringen die concurreren met geleerd verenigingen. Een kenmerk van angststoornissen is ImpaIRED uitsterven 2-4. Aldus uitsterven van geconditioneerde vrees in diermodellen niet alleen een belangrijk paradigma zowel remmende leren en het gedragsmodel therapie voor menselijke angststoornissen 5,6.

Omdat er sterke overeenkomst tussen angst en menselijke angst, wordt gedacht dat deze studies inzicht in de biologische aard van angststoornissen zoals post-traumatische stress-stoornis verschaffen en helpen om strategieën te ontwikkelen voor de behandeling. Een belangrijk doel van het preklinisch onderzoek is tot uitsterven leermiddel en om gerichte plasticiteit in het uitsterven circuits induceren uitsterven leren consolideren. Nervus vagus stimulatie (NVS) is een minimaal invasieve neuroprosthetic aanpak die kunnen worden gebruikt om de strakke temporele en circuit-specifieke modulatie van hersengebieden en synapsen betrokken bij een lopende opdracht te verstrekken. Een reeks recente studies uit de groep Michael Kilgard's aan de Universiteit van Texas in Dallas hebbenaangetoond dat pairing VNS met discrete zintuiglijke of motorische prikkels (bijvoorbeeld een toon of een hefboom pull) is zeer effectief in het bevorderen van corticale plasticiteit aan tinnitus 7 te behandelen, of motorische stoornissen na een beroerte 8-10 overwinnen. Bovendien, non-contingent VNS die zich binnen een korte tijdsvenster na het leren eveneens bevordert corticale plasticiteit en verbetert geheugenconsolidatie bij ratten en bij de mens 11-13.

Gezien de rol van de nervus vagus van het parasympathische traject, is het niet verrassend dat het zou kunnen deelnemen moduleren geheugen en synaptische plasticiteit. Zeer emotionele gebeurtenissen hebben de neiging om sterker herinneringen dan niet-emotionele herinneringen te produceren. Dit is waarschijnlijk te wijten aan de invloed van stresshormonen geheugensverankering. Posttraining toediening van het stresshormoon adrenaline verbetert het geheugen consolidatie in menselijke en niet-menselijke dieren, maar adrenaline niet de bloed-hersen-barrière 14, 15 steken </sup>. Daarom moet stressgeïnduceerde adrenaline vrijkomen van de hersenen indirect invloed op het geheugen consolidatie te verbeteren. Sterke aanwijzingen dat de nervus vagus de koppeling tussen circulerende adrenaline en de hersenen kunnen zijn. Miyashita en Williams 16 vond dat systemische toediening van adrenaline toegenomen nervus vagus vuren, en verhoogde niveaus van noradrenaline in de amygdala 17. Systemische toediening van adrenaline niet verbeteren geheugenconsolidatie als β-adrenerge receptoren geblokkeerd in de amygdala 18 suggereert dat de nervus vagus speelt een rol in het traject dat emotioneel wekken ervaringen overgaat in langetermijnherinneringen.

Aldus koppelen VNS met training heeft het potentieel om de hersenen veranderingen geheugensverankering en blootstelling ondersteunen geconditioneerde signalen in afwezigheid van wapening versterkt de consolidatie van uitsterven leren bij ratten 19,20 bevorderen. Het gebruik van VNS een Hier beschrijven wesa tool om corticale plasticiteit bevorderen en het uitsterven van een geconditioneerde angstreactie vergemakkelijken.

Protocol

Alle procedures beschreven in dit protocol worden uitgevoerd in overeenstemming met de NIH Gids voor de Zorg en gebruik van proefdieren uitgevoerd en ze werden goedgekeurd door de Institutional Animal Care en gebruik Comite van de Universiteit van Texas in Dallas. 1. De bouw van VNS manchetten Maak een boorgereedschap door af te zagen de scherpe einde van een 22 ½ G naald. Voer de nu stompe einde van de 22 ½ G naald over een metalen bestand meerdere malen om het te pla…

Representative Results

Dit gedeelte illustreert voorbeelden van resultaten die kunnen worden verkregen door VNS in combinatie met uitsterven leren de expressie van de geconditioneerde angstreactie bij ratten te verminderen. Voor Dagen 1 en 2 (Auditieve Fear Conditioning), werden ratten getraind op een auditieve vreesconditionering taak waarin footshocks werden gecombineerd met een toon. Op dag 3 (Voorbehandeling Test) werden gepresenteerd tonen in afwezigheid van footshocks invriezen te meten en afleiden geconditioneerde angstreactie verkrijg…

Discussion

We stellen hier een protocol dat wordt gebruikt om uitdoving van geconditioneerde angst tijdens een enkele sessie van blootstelling aan geconditioneerde signalen 19 vergemakkelijken en plasticiteit te moduleren in de signaalweg tussen de infralimbic cortex en de basolaterale amygdala die kunnen mediëren extinctie leren 20. Een cruciale stap voor het welslagen van dit protocol is de juiste levering van VNS tijdens uitsterven training. Daarom moet speciale aandacht worden besteed aan de constructie …

Disclosures

The authors have nothing to disclose.

Acknowledgements

This research was supported by the National Institute of Mental Health MH 086960-01A1 (Christa K. McIntyre).

Materials

Alcohol
Atropine Fisher A0132-5G
Betadine Henry Schein 69066950
Hydrogen peroxide  CVS 209478
Ketamine Henry Schein  1129300
Marcaine Henry Schein 6312615
Mineral Oil CVS 152355
Neosporin CVS 629451
Oxygen Home Depot 304179
Pennicillin Fisher PENNA-10MU
Propane Home Depot 304182
Xylazine Henry Schein 4019308
Tools
Jewelery Torch Smith Equipment 23-1001D
Sewing Needle Walgreens 441831
#5 Forceps (2) Fine Science Tools 11254-20
Soldering Iron Home Depot  203525863
AmScope SM-4TX-144A 3.5X-45X Circuit Board Boom Stereo Microscope + 144 LED AmScope SM-4TX-144A
Helping Hands A-M Systems  726200
Scalpel Blade Holder Fine Science Tools 10003-12
Metal File Home Depot 6601
Ruler Home Deopt 202035324
Curved Hemostats  Fine Science Tools 130009-12
Fine Scissors Fine Science Tools 14058-09
Spatula Fine Science Tools
Small Screwdriver Home Depot 646507
Magnetic Fixator Retraction System Fine Science Tools 18200-04, 18200-01, 18200-05
Heating Pad Walgreens 30294
Clippers Walgreens 277966
Sharpie Staples 125328
Ring Forceps Fine Science Tools 11103-09
Custom Micropipette Glass Tools (J shape and Straight) – Borosilicate glass Sutter Instrument B150-110-10
Adson Forceps Fine Science Tools 11006-12
Cuffs
Tubing Braintree Scientific Inc MRE-065
Platinum Iridium Wire Medwire 10IR9/49T
Gold Pins Mill-Max 1001-0-15-15-30-27-04-0
Suture Thread Henry Schein 100-5797
22 G Needles Fisher  14-815-525
Paper Tape Fisher  03-411-602
Solder Home Deopt 327793
Flux  Home Deopt 300142
Scalpel Blade, 10 or 15 Stoelting 52173-10
Silastic Laboratory Tubing .51 mm ID x .94 mm OD Fisher  508-002
Headcaps
Connector Pieces (male) Omnetics Connector Corporation A25001-004
Headcap pieces (female) Omnetics Connector Corporation A24001-004
Teets Dental Acrylic, Liquid and Powder A-M Systems 525000, 526000
26 Gauge Solid Copper Wire Staples 1016882  
Surgery
Bone Screws Stoelting+CB33:C61 51457
Scalpel Blades, 10 or 15 Stoelting 52173-10
1 ml syringes Fisher 14-826-261
22 G Needles Fisher  14-815-525
27 G Needles Fisher 14-826-48
2" x 2" Gauze Fisher 22-362-178
Swabs Fisher 19-120-472
Puppy Pads PetCo 1310747
Kim Wipes Fisher 06-666-A
Chamber and Behavioral Setting 
Husky Metal Front Base Cabinet (30WX19DX34H) Home Depot 100607961
Quiet Barrier­ HD Soundproofing Material (Sheet) (PSA) soundproofcow.com 10203041
Convoluted Acoustic Foam Panel soundproofcow.com 10432400
Isolated Pulse Stimulator Model 2100 A-M Systems 720000
Digital Camera – Logitech Webcam C210 Logitech B003LVZO88
MatLab Mathworks.com
Sinometer 10MHz Single Channel Oscilloscope Sinometer CQ5010C
OxyLED T-01 DIY Stick-on Anywhere 4-LED Touch Tap Light OXYLED B00GD8OKY0
5k ohm potentiomter Alpha Electronics B00CTWDHIO
Extech 407730 40-to-130-Decibel Digital Sound Level Meter Extech Instruments B000EWY67W
DSCK-C Dual Output, scrambled shocker Kinder Scientific Co

References

  1. Quirk, G. J., Mueller, D. Neural mechanisms of extinction learning and retrieval. Neuropsychopharmacol. 33 (1), 56-72 (1038).
  2. Milad, M. R., Orr, S. P., Lasko, N. B., Chang, Y., Rauch, S. L., Pitman, R. K. Presence and acquired origin of reduced recall for fear extinction in PTSD: results of a twin study. J Psychiat Res. 42 (7), 515-520 (2008).
  3. Jovanovic, T., Norrholm, S. D., Blanding, N. Q., Davis, M., Duncan, E., Bradley, B., Ressler, K. J. Impaired fear inhibition is a biomarker of PTSD but not depression. Depress Anxiety. 27 (3), 244-251 (2010).
  4. Norrholm, S. D., et al. Fear extinction in traumatized civilians with posttraumatic stress disorder: relation to symptom severity. Biol Psychiat. 69 (6), 556-563 (2011).
  5. Phelps, E. A., LeDoux, J. E. Contributions of the amygdala to emotion processing: from animal models to human behavior. Neuron. 48 (2), 175-187 (2005).
  6. Pape, H. C., Paré, D. Plastic synaptic networks of the amygdala for the acquisition, expression, and extinction of conditioned fear. Physiol Rev. 90 (2), 419-463 (2010).
  7. Engineer, N. D., et al. Reversing pathological neural activity using targeted plasticity. Nature. 470 (7332), 101-104 (2011).
  8. Porter, B. A., et al. Repeatedly pairing vagus nerve stimulation with a movement reorganizes primary motor cortex. Cereb Cortex. 22 (10), 2365-2374 (2012).
  9. Hays, S. A., et al. Vagus nerve stimulation during rehabilitative training improves functional recovery after intracerebral hemorrhage. Stroke. 45, 3097-3100 (2014).
  10. Khodaparast, N., et al. Vagus nerve stimulation delivered during motor rehabilitation improves recovery in a rat model of stroke. Neurorehab Neural Re. 28 (7), 698-706 (2014).
  11. Clark, K. B., Krahl, S. E., Smith, D. C., Jensen, R. A. Post‐training unilateral vagal stimulation enhances retention performance in the rat. Neurobiol Learn Mem. 63 (3), 213-216 (1995).
  12. Clark, K. B., Smith, D. C., Hassert, D. L., Browning, R. A., Naritoku, D. K., Jensen, R. A. Posttraining electrical stimulation of vagal afferents with concomitant vagal efferent inactivation enhances memory storage processes in the rat. Neurobiol Learn Mem. 70 (3), 364-373 (1998).
  13. Clark, K. B., Naritoku, D. K., Smith, D. C., Browning, R. A., Jensen, R. A. Enhanced recognition memory following vagus nerve stimulation in human subjects. Nat. Neurosci. 2, 94-98 (1999).
  14. McGaugh, J. L. amygdala modulates the consolidation of memories of emotionally arousing experiences. Annu Rev Neurosci. 27, 1-28 (2004).
  15. McGaugh, J. L., Roozendaal, B. Role of adrenal stress hormones in forming lasting memories in the brain. Curr Opin Neurobiol. 12, 205-210 (2002).
  16. Miyashita, T., Williams, C. L. Epinephrine administration increases neural impulses propagated along the vagus nerve: Role of peripheral beta-adrenergic receptors. Neurobiol Learn Mem. 85 (2), 116-124 (2006).
  17. Williams, C. L., Men, D., Clayton, E. C., Gold, P. E. Norephinephrine release in the amygdala after systemic injection of epinephrine or escapable footshock: contribution of the nucleus of the solitary tract. Behavioral Neurosci. 112 (6), 1414-1422 (1998).
  18. Liang, K. C., Juler, R. G., McGaugh, J. L. Modulating effects of post-training epinephrine on memory: involvement of the amygdala noradrenergic system. Brain Res. 368 (1), 125-133 (1986).
  19. Peña, D. F., Engineer, N. D., McIntyre, C. K. Rapid remission of conditioned fear expression with extinction training paired with vagus nerve stimulation. Biol Psychiat. 73 (11), 1071-1077 (2013).
  20. Peña, D. F., Childs, J. E., Willett, S., Vital, A., McIntyre, C. K., Kroener, S. Vagus nerve stimulation enhances extinction of conditioned fear and modulates plasticity in the pathway from the ventromedial prefrontal cortex to the amygdala. Front Behav Neurosci. 8 (327), (2014).
  21. Maren, S. Overtraining does not mitigate contextual fear conditioning deficits produced by neurotoxic lesions of the basolateral amygdala. J Neurosci. 18 (8), 3088-3097 (1998).
  22. Blanchard, R. J., Blanchard, D. C. Crouching as an index of fear. J Comp Physiol Psych. 67 (3), 370-375 (1969).
  23. Maroun, M. Stress reverses plasticity in the pathway projecting from the ventromedial prefrontal cortex to the basolateral amygdala. Eur J Neurosci. 24 (10), 2917-2922 (2006).
  24. Moussawi, K., et al. N-Acetylcysteine reverses cocaine-induced metaplasticity. Nat Neurosci. 12, 182-189 (2009).
  25. Paintal, A. S. Vagal sensory receptors and their reflex effects. Physiol. Rev. 53 (1), 159-227 (1973).
  26. Aalbers, M., Vles, J., Klinkenberg, S., Hoogland, G., Majoie, M., Rijkers, K. Animal models for vagus nerve stimulation in epilepsy. Exp Neurol. 230 (2), 167-175 (2011).
  27. Ricardo, J. A., Koh, E. T. Anatomical evidence of direct projections from the nucleus of the solitary tract to the hypothalamus, amygdala, and other forebrain structures in the rat. Brain Res. 153, 1-26 (1978).
  28. Takigawa, M., Mogenson, G. J. A study of inputs to antidromically identified neurons of the locus coeruleus. Brain Res. 135 (2), 217-230 (1977).
  29. Groves, D. A., Bowman, E. M., Brown, V. J. Recordings from the rat locus coeruleus during acute vagal nerve stimulation in the anaesthetised rat. Neurosci Lett. 379 (3), 174-179 (2005).
  30. Manta, S., Dong, J., Debonnel, G., Blier, P. Enhancement of the function of rat serotonin and norepinephrine neurons by sustained vagus nerve stimulation. J Psychiatr Neurosci. 34 (4), 272-280 (2009).
  31. Manta, S., El Mansari, M., Debonnel, G., Blier, P. Electrophysiological and neurochemical effects of long-term vagus nerve stimulation on the rat monoaminergic systems. Int J Neuropsychoph. 16 (2), 459-470 (2013).
  32. Dorr, A. E., Debonnel, G. Effect of vagus nerve stimulation on serotonergic and noradrenergic transmission. J Pharmacol Exp Ther. 318, 890-898 (2006).
  33. Follesa, P., et al. Vagus nerve stimulation increases norepinephrine concentration and the gene expression of BDNF and bFGF in the rat brain. Brain Res. 1179 (7), 28-34 (2007).
  34. Biggio, F., et al. Chronic vagus nerve stimulation induces neuronal plasticity in the rat hippocampus. Int J Neuropsychoph. 12 (9), 1209-1221 (1017).
  35. Nichols, J. A., Nichols, A. R., Smirnakis, S. M., Engineer, N. D., Kilgard, M. P., Atzori, M. Vagus nerve stimulation modulates cortical synchrony and excitability through the activation of muscarinic receptors. Neuroscience. 189, 207-214 (2011).
  36. Peters, J., Kalivas, P. W., Quirk, G. J. Extinction circuits for fear and addiction overlap in prefrontal cortex. Learn Memory. 16, 279-288 (2009).
  37. Ji, J., Maren, S. Hippocampal involvement in contextual modulation of fear extinction. Hippocampus. 17 (9), 749-758 (2007).
  38. Roosevelt, R. W., Smith, D. C., Clough, R. W., Jensen, R. A., Browning, R. A. Increased extracellular concentrations of norepinephrine in cortex and hippocampus following vagus nerve stimulation in the rat. Brain Res. 1119 (1), 124-132 (2006).
  39. Hassert, D. L., Miyashita, T., Williams, C. L. The effects of peripheral vagal nerve stimulation at a memory-modulating intensity on norepinephrine output in the basolateral amygdala. Behav Neurosci. 118 (1), 79-88 (2004).
  40. Ura, H., et al. Vagus nerve stimulation induced long-lasting enhancement of synaptic transmission and decreased granule cell discharge in the hippocampal dentate gyrus of urethane-anesthetized rats. Brain Res. 1492, 63-71 (2013).
  41. Zuo, Y., Smith, D. C., Jensen, R. A. Vagus nerve stimulation potentiates hippocampal LTP in freely-moving rats. Physiol Behav. 90 (4), 583-589 (2007).
  42. Shen, H., Fuchino, Y., Miyamoto, D., Nomura, H., Matsuki, N. Vagus nerve stimulation enhances perforant path-CA3 synaptic transmission via the activation of β-adrenergic receptors and the locus coeruleus. Int J Neuropsychophl. 15 (4), 523-530 (2012).
  43. Fibiger, H. C., Mason, S. T. The effects of dorsal bundle injections of 6-hydroxydopamine on avoidance responding in rats. Bitr J Pharmacol. 64 (4), 601-605 (1978).
  44. Mason, S. T. Fibiger H.C. 6-OHDA lesion of the dorsal noradrenergic bundle alters extinction of passive avoidance. Brain Res. 152, 209-214 (1978).
  45. McGaugh, J. L. Memory consolidation and the amygdala: a systems perspective. Trends Neurosci. 25 (9), 456-461 (2002).
  46. LaLumiere, R. T., Niehoff, K. E., Kalivas, P. W. The infralimbic cortex regulates the consolidation of extinction after cocaine self-administration. Learn Memory. 17, 168-175 (2010).
  47. Mueller, D., Cahill, S. P. Noradrenergic modulation of extinction learning and exposure therapy. Behav Brain Res. 208 (1), 1-11 (2010).
  48. Smith, R. J., Aston-Jones, G. α(2) Adrenergic and imidazoline receptor agonists prevent cue-induced cocaine seeking. Biol Psychiat. 70 (8), 712-719 (2011).
  49. Buffalari, D. M., Baldwin, C. K., See, R. E. Treatment of cocaine withdrawal anxiety with guanfacine: relationships to cocaine intake and reinstatement of cocaine seeking in rats. Psychopharmacol. (Berl). 223 (2), 179-190 (2012).
  50. De Ridder, D., Vanneste, S., Engineer, N. D., Kilgard, M. P. Safety and efficacy of vagus nerve stimulation paired with tones for the treatment of tinnitus: a case series). Neuromodulation. 17 (2), 170-179 (2014).
  51. Hays, S. A., et al. The timing and amount of vagus nerve stimulation during rehabilitative training affect poststroke recovery of forelimb strength. Neuroreport. 25, 676-682 (2014).

Play Video

Cite This Article
Childs, J. E., Alvarez-Dieppa, A. C., McIntyre, C. K., Kroener, S. Vagus Nerve Stimulation as a Tool to Induce Plasticity in Pathways Relevant for Extinction Learning. J. Vis. Exp. (102), e53032, doi:10.3791/53032 (2015).

View Video