Summary

ツールとしての迷走神経刺激は、絶滅の学習のための関連経路の可塑性を誘導するために

Published: August 21, 2015
doi:

Summary

迷走神経刺激(VNS)は、行動の範囲を変更するには、前脳にターゲットを絞ったシナプス可塑性を誘導するためのツールと​​して浮上しています。このプロトコルは、恐怖の絶滅メモリの統合を容易にするためにVNSを実装する方法について説明します。

Abstract

Extinction describes the process of attenuating behavioral responses to neutral stimuli when they no longer provide the reinforcement that has been maintaining the behavior. There is close correspondence between fear and human anxiety, and therefore studies of extinction learning might provide insight into the biological nature of anxiety-related disorders such as post-traumatic stress disorder, and they might help to develop strategies to treat them. Preclinical research aims to aid extinction learning and to induce targeted plasticity in extinction circuits to consolidate the newly formed memory. Vagus nerve stimulation (VNS) is a powerful approach that provides tight temporal and circuit-specific release of neurotransmitters, resulting in modulation of neuronal networks engaged in an ongoing task. VNS enhances memory consolidation in both rats and humans, and pairing VNS with exposure to conditioned cues enhances the consolidation of extinction learning in rats. Here, we provide a detailed protocol for the preparation of custom-made parts and the surgical procedures required for VNS in rats. Using this protocol we show how VNS can facilitate the extinction of conditioned fear responses in an auditory fear conditioning task. In addition, we provide evidence that VNS modulates synaptic plasticity in the pathway between the infralimbic (IL) medial prefrontal cortex and the basolateral complex of the amygdala (BLA), which is involved in the expression and modulation of extinction memory.

Introduction

古典的恐怖条件付けは、不安障害の生物学的基礎を研究するために広く使用されている動物モデルを提供します。恐怖条件付け、嫌悪刺激(無条件刺激、米国、 例えば、フットショック)中にこのようなトーンおよび/ ​​またはコンテキスト(; CS条件刺激)として、中性刺激と一緒に提示されています。恐怖条件付けの間、CSと米国との間の関連が形成されています。最終的にはCSの提示だけでは恐怖反応(; CR条件反応)を誘発します。恐怖消去では、CSは、CRが徐々に1を減少させる、米国の非存在下で繰り返し提示されています。このように、条件付け恐怖の絶滅は、彼らはもはや嫌悪結果を予測する際、中性刺激に恐ろしい行動反応が減衰していないされているアクティブなプロセスです。馴化応答の消滅を学習団体と競合新しい思い出の統合を必要とします。不安障害の特徴はIMPAですIRED絶滅2-4。このように、動物モデルでの馴化恐怖の絶滅は、阻害学習と人間の不安障害5,6のための行動療法のモデルとしての両方の重要なパラダイムとして機能します。

恐怖と人間の不安との間に密接な対応があるので、これらの研究は、このような心的外傷後ストレス障害などの不安関連障害の生物学的性質への洞察を提供することができ、それらを扱うための戦略を開発するために役立つと考えられています。前臨床研究の重要な目標は、絶滅の学習を支援するために絶滅の学習を統合するために絶滅回路にターゲットを絞った可塑性を誘導することです。迷走神経刺激(VNS)の継続的な作業に従事した脳領域およびシナプスの緊密な時間的および回路固有の変調を提供するために使用されるかもしれない低侵襲neuroprostheticアプローチです。持っているテキサス大学ダラス校のMichael Kilgardのグループからの最近の一連の研究個別の感覚や運動刺激とその対VNSを示す( 例えば、音やレバープル)が耳鳴り7を治療するため、または脳卒中8-10次の運動障害を克服するために皮質の可塑性を促進する上で非常に有効です。また、同様に、学習後の短い時間窓内で発生する非偶発VNS、皮質可塑性を促進し、ラットおよびヒト11-13でメモリの統合を強化します。

副交感神経経路における迷走神経の役割を考慮すると、それはメモリとシナプス可塑性の調節に関与することができることは驚くべきことではありません。非常に感情的なイベントは、非感情的な思い出よりも強い思い出を生成する傾向があります。これは、メモリの統合のストレスホルモンの影響に起因する可能性が高いです。ストレスホルモンのアドレナリンの訓練後の投与は、ヒトおよび非ヒト動物における記憶の固定を強化するが、アドレナリンは、15血液脳関門14を通過しません</suP>。そのため、ストレス誘導アドレナリン放出は、メモリの統合を強化するために、間接的に脳に影響を与える必要があります。強力な証拠が迷走神経は、アドレナリンと脳循環との間のリンクであることを示唆しています。宮下とウィリアムズ16は、アドレナリンの全身投与は迷走神経発火を増加し、扁桃体17にノルエピネフリンのレベルを増加させたことがわかりました。 βアドレナリン受容体は迷走神経が長期メモリに感情的に喚起する経験をオン経路の役割を果たしていることを示唆している扁桃体18にブロックされているときにアドレナリンの全身投与は、メモリの統合を強化していません。

このように、訓練をVNSをペアリングすると、ラット19,20における絶滅学習の統合を強化する補強材の存在しない状態で条件付け手がかりにメモリの統合と露出をサポートする脳の変化を強化する可能性を秘めています。ここでは、VNS ​​Aの使用を記載していますSAツールは、皮質の可塑性を促進し、条件付け恐怖応答の消滅を容易にします。

Protocol

このプロトコルで説明されているすべての手順は、実験動物の管理と使用に関するNI​​Hガイドに従って実施されており、これらはテキサス大学ダラス校の施設内動物管理使用委員会によって承認されました。 VNS袖口の1建設 22½G針の鋭い端をソーイングすることにより掘削ツールを作成します。 金属ファイルの上に平らに数回22½G針のようになりまし平?…

Representative Results

このセクションでは、ラットにおける条件付け恐怖応答の発現を減少させるために消光学習と組み合わせてVNSを用いることにより得ることができる結果の例を示します。 1日目及び2日目(聴覚恐怖条件付け)のために、ラットをfootshocksがトーンと​​ペアにされた聴覚恐怖条件付け作業に訓練しました。 3日目(前処理試験)で、トーンが凍結レベルを測定し、条件付け恐怖反応の獲得を推?…

Discussion

ここでは、馴化の合図への曝露19の単一のセッション中に馴化恐怖の絶滅を容易にし、infralimbic皮質および20の学習消滅を媒介することができる基底外側扁桃体との間の経路における可塑性を調節するために使用されるプロトコルを提示します。このプロトコルの成功のための重要なステップは、絶滅のトレーニング中VNSの適切な配信です。そのため、特別なケアは、カフ電極…

Disclosures

The authors have nothing to disclose.

Acknowledgements

This research was supported by the National Institute of Mental Health MH 086960-01A1 (Christa K. McIntyre).

Materials

Alcohol
Atropine Fisher A0132-5G
Betadine Henry Schein 69066950
Hydrogen peroxide  CVS 209478
Ketamine Henry Schein  1129300
Marcaine Henry Schein 6312615
Mineral Oil CVS 152355
Neosporin CVS 629451
Oxygen Home Depot 304179
Pennicillin Fisher PENNA-10MU
Propane Home Depot 304182
Xylazine Henry Schein 4019308
Tools
Jewelery Torch Smith Equipment 23-1001D
Sewing Needle Walgreens 441831
#5 Forceps (2) Fine Science Tools 11254-20
Soldering Iron Home Depot  203525863
AmScope SM-4TX-144A 3.5X-45X Circuit Board Boom Stereo Microscope + 144 LED AmScope SM-4TX-144A
Helping Hands A-M Systems  726200
Scalpel Blade Holder Fine Science Tools 10003-12
Metal File Home Depot 6601
Ruler Home Deopt 202035324
Curved Hemostats  Fine Science Tools 130009-12
Fine Scissors Fine Science Tools 14058-09
Spatula Fine Science Tools
Small Screwdriver Home Depot 646507
Magnetic Fixator Retraction System Fine Science Tools 18200-04, 18200-01, 18200-05
Heating Pad Walgreens 30294
Clippers Walgreens 277966
Sharpie Staples 125328
Ring Forceps Fine Science Tools 11103-09
Custom Micropipette Glass Tools (J shape and Straight) – Borosilicate glass Sutter Instrument B150-110-10
Adson Forceps Fine Science Tools 11006-12
Cuffs
Tubing Braintree Scientific Inc MRE-065
Platinum Iridium Wire Medwire 10IR9/49T
Gold Pins Mill-Max 1001-0-15-15-30-27-04-0
Suture Thread Henry Schein 100-5797
22 G Needles Fisher  14-815-525
Paper Tape Fisher  03-411-602
Solder Home Deopt 327793
Flux  Home Deopt 300142
Scalpel Blade, 10 or 15 Stoelting 52173-10
Silastic Laboratory Tubing .51 mm ID x .94 mm OD Fisher  508-002
Headcaps
Connector Pieces (male) Omnetics Connector Corporation A25001-004
Headcap pieces (female) Omnetics Connector Corporation A24001-004
Teets Dental Acrylic, Liquid and Powder A-M Systems 525000, 526000
26 Gauge Solid Copper Wire Staples 1016882  
Surgery
Bone Screws Stoelting+CB33:C61 51457
Scalpel Blades, 10 or 15 Stoelting 52173-10
1 ml syringes Fisher 14-826-261
22 G Needles Fisher  14-815-525
27 G Needles Fisher 14-826-48
2" x 2" Gauze Fisher 22-362-178
Swabs Fisher 19-120-472
Puppy Pads PetCo 1310747
Kim Wipes Fisher 06-666-A
Chamber and Behavioral Setting 
Husky Metal Front Base Cabinet (30WX19DX34H) Home Depot 100607961
Quiet Barrier­ HD Soundproofing Material (Sheet) (PSA) soundproofcow.com 10203041
Convoluted Acoustic Foam Panel soundproofcow.com 10432400
Isolated Pulse Stimulator Model 2100 A-M Systems 720000
Digital Camera – Logitech Webcam C210 Logitech B003LVZO88
MatLab Mathworks.com
Sinometer 10MHz Single Channel Oscilloscope Sinometer CQ5010C
OxyLED T-01 DIY Stick-on Anywhere 4-LED Touch Tap Light OXYLED B00GD8OKY0
5k ohm potentiomter Alpha Electronics B00CTWDHIO
Extech 407730 40-to-130-Decibel Digital Sound Level Meter Extech Instruments B000EWY67W
DSCK-C Dual Output, scrambled shocker Kinder Scientific Co

References

  1. Quirk, G. J., Mueller, D. Neural mechanisms of extinction learning and retrieval. Neuropsychopharmacol. 33 (1), 56-72 (1038).
  2. Milad, M. R., Orr, S. P., Lasko, N. B., Chang, Y., Rauch, S. L., Pitman, R. K. Presence and acquired origin of reduced recall for fear extinction in PTSD: results of a twin study. J Psychiat Res. 42 (7), 515-520 (2008).
  3. Jovanovic, T., Norrholm, S. D., Blanding, N. Q., Davis, M., Duncan, E., Bradley, B., Ressler, K. J. Impaired fear inhibition is a biomarker of PTSD but not depression. Depress Anxiety. 27 (3), 244-251 (2010).
  4. Norrholm, S. D., et al. Fear extinction in traumatized civilians with posttraumatic stress disorder: relation to symptom severity. Biol Psychiat. 69 (6), 556-563 (2011).
  5. Phelps, E. A., LeDoux, J. E. Contributions of the amygdala to emotion processing: from animal models to human behavior. Neuron. 48 (2), 175-187 (2005).
  6. Pape, H. C., Paré, D. Plastic synaptic networks of the amygdala for the acquisition, expression, and extinction of conditioned fear. Physiol Rev. 90 (2), 419-463 (2010).
  7. Engineer, N. D., et al. Reversing pathological neural activity using targeted plasticity. Nature. 470 (7332), 101-104 (2011).
  8. Porter, B. A., et al. Repeatedly pairing vagus nerve stimulation with a movement reorganizes primary motor cortex. Cereb Cortex. 22 (10), 2365-2374 (2012).
  9. Hays, S. A., et al. Vagus nerve stimulation during rehabilitative training improves functional recovery after intracerebral hemorrhage. Stroke. 45, 3097-3100 (2014).
  10. Khodaparast, N., et al. Vagus nerve stimulation delivered during motor rehabilitation improves recovery in a rat model of stroke. Neurorehab Neural Re. 28 (7), 698-706 (2014).
  11. Clark, K. B., Krahl, S. E., Smith, D. C., Jensen, R. A. Post‐training unilateral vagal stimulation enhances retention performance in the rat. Neurobiol Learn Mem. 63 (3), 213-216 (1995).
  12. Clark, K. B., Smith, D. C., Hassert, D. L., Browning, R. A., Naritoku, D. K., Jensen, R. A. Posttraining electrical stimulation of vagal afferents with concomitant vagal efferent inactivation enhances memory storage processes in the rat. Neurobiol Learn Mem. 70 (3), 364-373 (1998).
  13. Clark, K. B., Naritoku, D. K., Smith, D. C., Browning, R. A., Jensen, R. A. Enhanced recognition memory following vagus nerve stimulation in human subjects. Nat. Neurosci. 2, 94-98 (1999).
  14. McGaugh, J. L. amygdala modulates the consolidation of memories of emotionally arousing experiences. Annu Rev Neurosci. 27, 1-28 (2004).
  15. McGaugh, J. L., Roozendaal, B. Role of adrenal stress hormones in forming lasting memories in the brain. Curr Opin Neurobiol. 12, 205-210 (2002).
  16. Miyashita, T., Williams, C. L. Epinephrine administration increases neural impulses propagated along the vagus nerve: Role of peripheral beta-adrenergic receptors. Neurobiol Learn Mem. 85 (2), 116-124 (2006).
  17. Williams, C. L., Men, D., Clayton, E. C., Gold, P. E. Norephinephrine release in the amygdala after systemic injection of epinephrine or escapable footshock: contribution of the nucleus of the solitary tract. Behavioral Neurosci. 112 (6), 1414-1422 (1998).
  18. Liang, K. C., Juler, R. G., McGaugh, J. L. Modulating effects of post-training epinephrine on memory: involvement of the amygdala noradrenergic system. Brain Res. 368 (1), 125-133 (1986).
  19. Peña, D. F., Engineer, N. D., McIntyre, C. K. Rapid remission of conditioned fear expression with extinction training paired with vagus nerve stimulation. Biol Psychiat. 73 (11), 1071-1077 (2013).
  20. Peña, D. F., Childs, J. E., Willett, S., Vital, A., McIntyre, C. K., Kroener, S. Vagus nerve stimulation enhances extinction of conditioned fear and modulates plasticity in the pathway from the ventromedial prefrontal cortex to the amygdala. Front Behav Neurosci. 8 (327), (2014).
  21. Maren, S. Overtraining does not mitigate contextual fear conditioning deficits produced by neurotoxic lesions of the basolateral amygdala. J Neurosci. 18 (8), 3088-3097 (1998).
  22. Blanchard, R. J., Blanchard, D. C. Crouching as an index of fear. J Comp Physiol Psych. 67 (3), 370-375 (1969).
  23. Maroun, M. Stress reverses plasticity in the pathway projecting from the ventromedial prefrontal cortex to the basolateral amygdala. Eur J Neurosci. 24 (10), 2917-2922 (2006).
  24. Moussawi, K., et al. N-Acetylcysteine reverses cocaine-induced metaplasticity. Nat Neurosci. 12, 182-189 (2009).
  25. Paintal, A. S. Vagal sensory receptors and their reflex effects. Physiol. Rev. 53 (1), 159-227 (1973).
  26. Aalbers, M., Vles, J., Klinkenberg, S., Hoogland, G., Majoie, M., Rijkers, K. Animal models for vagus nerve stimulation in epilepsy. Exp Neurol. 230 (2), 167-175 (2011).
  27. Ricardo, J. A., Koh, E. T. Anatomical evidence of direct projections from the nucleus of the solitary tract to the hypothalamus, amygdala, and other forebrain structures in the rat. Brain Res. 153, 1-26 (1978).
  28. Takigawa, M., Mogenson, G. J. A study of inputs to antidromically identified neurons of the locus coeruleus. Brain Res. 135 (2), 217-230 (1977).
  29. Groves, D. A., Bowman, E. M., Brown, V. J. Recordings from the rat locus coeruleus during acute vagal nerve stimulation in the anaesthetised rat. Neurosci Lett. 379 (3), 174-179 (2005).
  30. Manta, S., Dong, J., Debonnel, G., Blier, P. Enhancement of the function of rat serotonin and norepinephrine neurons by sustained vagus nerve stimulation. J Psychiatr Neurosci. 34 (4), 272-280 (2009).
  31. Manta, S., El Mansari, M., Debonnel, G., Blier, P. Electrophysiological and neurochemical effects of long-term vagus nerve stimulation on the rat monoaminergic systems. Int J Neuropsychoph. 16 (2), 459-470 (2013).
  32. Dorr, A. E., Debonnel, G. Effect of vagus nerve stimulation on serotonergic and noradrenergic transmission. J Pharmacol Exp Ther. 318, 890-898 (2006).
  33. Follesa, P., et al. Vagus nerve stimulation increases norepinephrine concentration and the gene expression of BDNF and bFGF in the rat brain. Brain Res. 1179 (7), 28-34 (2007).
  34. Biggio, F., et al. Chronic vagus nerve stimulation induces neuronal plasticity in the rat hippocampus. Int J Neuropsychoph. 12 (9), 1209-1221 (1017).
  35. Nichols, J. A., Nichols, A. R., Smirnakis, S. M., Engineer, N. D., Kilgard, M. P., Atzori, M. Vagus nerve stimulation modulates cortical synchrony and excitability through the activation of muscarinic receptors. Neuroscience. 189, 207-214 (2011).
  36. Peters, J., Kalivas, P. W., Quirk, G. J. Extinction circuits for fear and addiction overlap in prefrontal cortex. Learn Memory. 16, 279-288 (2009).
  37. Ji, J., Maren, S. Hippocampal involvement in contextual modulation of fear extinction. Hippocampus. 17 (9), 749-758 (2007).
  38. Roosevelt, R. W., Smith, D. C., Clough, R. W., Jensen, R. A., Browning, R. A. Increased extracellular concentrations of norepinephrine in cortex and hippocampus following vagus nerve stimulation in the rat. Brain Res. 1119 (1), 124-132 (2006).
  39. Hassert, D. L., Miyashita, T., Williams, C. L. The effects of peripheral vagal nerve stimulation at a memory-modulating intensity on norepinephrine output in the basolateral amygdala. Behav Neurosci. 118 (1), 79-88 (2004).
  40. Ura, H., et al. Vagus nerve stimulation induced long-lasting enhancement of synaptic transmission and decreased granule cell discharge in the hippocampal dentate gyrus of urethane-anesthetized rats. Brain Res. 1492, 63-71 (2013).
  41. Zuo, Y., Smith, D. C., Jensen, R. A. Vagus nerve stimulation potentiates hippocampal LTP in freely-moving rats. Physiol Behav. 90 (4), 583-589 (2007).
  42. Shen, H., Fuchino, Y., Miyamoto, D., Nomura, H., Matsuki, N. Vagus nerve stimulation enhances perforant path-CA3 synaptic transmission via the activation of β-adrenergic receptors and the locus coeruleus. Int J Neuropsychophl. 15 (4), 523-530 (2012).
  43. Fibiger, H. C., Mason, S. T. The effects of dorsal bundle injections of 6-hydroxydopamine on avoidance responding in rats. Bitr J Pharmacol. 64 (4), 601-605 (1978).
  44. Mason, S. T. Fibiger H.C. 6-OHDA lesion of the dorsal noradrenergic bundle alters extinction of passive avoidance. Brain Res. 152, 209-214 (1978).
  45. McGaugh, J. L. Memory consolidation and the amygdala: a systems perspective. Trends Neurosci. 25 (9), 456-461 (2002).
  46. LaLumiere, R. T., Niehoff, K. E., Kalivas, P. W. The infralimbic cortex regulates the consolidation of extinction after cocaine self-administration. Learn Memory. 17, 168-175 (2010).
  47. Mueller, D., Cahill, S. P. Noradrenergic modulation of extinction learning and exposure therapy. Behav Brain Res. 208 (1), 1-11 (2010).
  48. Smith, R. J., Aston-Jones, G. α(2) Adrenergic and imidazoline receptor agonists prevent cue-induced cocaine seeking. Biol Psychiat. 70 (8), 712-719 (2011).
  49. Buffalari, D. M., Baldwin, C. K., See, R. E. Treatment of cocaine withdrawal anxiety with guanfacine: relationships to cocaine intake and reinstatement of cocaine seeking in rats. Psychopharmacol. (Berl). 223 (2), 179-190 (2012).
  50. De Ridder, D., Vanneste, S., Engineer, N. D., Kilgard, M. P. Safety and efficacy of vagus nerve stimulation paired with tones for the treatment of tinnitus: a case series). Neuromodulation. 17 (2), 170-179 (2014).
  51. Hays, S. A., et al. The timing and amount of vagus nerve stimulation during rehabilitative training affect poststroke recovery of forelimb strength. Neuroreport. 25, 676-682 (2014).

Play Video

Cite This Article
Childs, J. E., Alvarez-Dieppa, A. C., McIntyre, C. K., Kroener, S. Vagus Nerve Stimulation as a Tool to Induce Plasticity in Pathways Relevant for Extinction Learning. J. Vis. Exp. (102), e53032, doi:10.3791/53032 (2015).

View Video