Summary

בידוד וההעשרה של אדם שומן המופק מתאי סטרומה לOsteogenesis משופר

Published: January 12, 2015
doi:

Summary

The transcriptional heterogeneity within human adipose-derived stromal cells can be defined on the single cell level using cell surface markers and osteogenic genes. We describe a protocol utilizing flow cytometry for the isolation of cell subpopulations with increased osteogenic potential, which may be used to enhance craniofacial skeletal reconstruction.

Abstract

Bone marrow-derived mesenchymal stromal cells (BM-MSCs) are considered the gold standard for stem cell-based tissue engineering applications. However, the process by which they must be harvested can be associated with significant donor site morbidity. In contrast, adipose-derived stromal cells (ASCs) are more readily abundant and more easily harvested, making them an appealing alternative to BM-MSCs. Like BM-MSCs, ASCs can differentiate into osteogenic lineage cells and can be used in tissue engineering applications, such as seeding onto scaffolds for use in craniofacial skeletal defects. ASCs are obtained from the stromal vascular fraction (SVF) of digested adipose tissue, which is a heterogeneous mixture of ASCs, vascular endothelial and mural cells, smooth muscle cells, pericytes, fibroblasts, and circulating cells. Flow cytometric analysis has shown that the surface marker profile for ASCs is similar to that for BM-MSCs. Despite several published reports establishing markers for the ASC phenotype, there is still a lack of consensus over profiles identifying osteoprogenitor cells in this heterogeneous population. This protocol describes how to isolate and use a subpopulation of ASCs with enhanced osteogenic capacity to repair critical-sized calvarial defects.

Introduction

The heterogeneous nature of stem cell populations is not yet fully understood and remains a major impediment to the development of clinically effective stem cell-based therapeutic applications. One of the most common ways to characterize a heterogeneous population of stem cells is to employ a cell sorting method, such as fluorescence-activated cell sorting (FACS), to separate cells based on their surface marker expression profiles. As sorting methods become more complex, it becomes possible to identify more distinct functional subpopulations of cells. Microfluidic-based technologies are becoming more and more frequently utilized in analysis of gene expression at the single cell level. Multiplexed quantitative polymerase chain reaction (qPCR) within a microfluidic chip allows for effective and reliable high-resolution, single cell transcriptional analysis.1-5

In a previous study using single cell transcriptional profiling of 48 genes, considerable transcriptional heterogeneity was observed among ASCs.6 However, the distribution of genes MSX2, BMP-5, BMP-7, ALP, OCN, RUNX2 exhibited a strong association with a cluster of cells possessing highly osteogenic transcriptional profiles. To isolate cells according to this osteogenic gene expression profile, surface antigen expression patterns were correlated with transcription patterns and surface marker expression of endoglin (CD105) was subsequently discovered to closely correlate with enhanced osteogenic differentiation potential of ASCs. Independent of CD105 expression, expression of surface receptor Thy-1 (CD90), a glycosyl-phosphatidylinositol-linked membrane protein previously shown by Chen et al. to be associated with osteoprogenitor cells, was also correlated with osteogenic gene expression.6,7 These findings provide the opportunity to prospectively isolate subpopulations within the larger heterogeneous pool of ASCs with increased osteogenic capacity for cell-based bone tissue engineering applications.

Protocol

הערה: כל דגימות המטופל התקבלו עם הסכמה מדעת, ופרוטוקולי ניסוי היו נבדקו ואושרו על ידי אוניברסיטת סטנפורד Institutional Review Board (פרוטוקול # 2,188 ו# 9999). 1. בידוד תא ותרבות: רקמת שומן תת-עורי לק?…

Representative Results

באמצעות CD90 כסמן לתאים עם תוצאות משופרות Osteogenesis בבידוד של אוכלוסיות מועשרות של ASCs האנושי (איור 1 א, 1 ב '). ASCs הוכתמו CD45 פסיפיק בלו-מצומדות אנטי-אנושי, CD105 אנטי אנושי FITC מצומדות-, וCD90 אנטי אנושי APC-מצומדות. לאחר המיון, רמת טוהר הייתה גדול יותר מ- 98%, כפי שלכמת ידי ני…

Discussion

נכון לעכשיו, את בידודה של תת-אוכלוסיות הומוגניות של ASCs מSVF של רקמת שומן אנושית נותר מאתגר אף מטרה רצויה. בידוד של אוכלוסיות ASC פרו-osteogenic במיוחד רצוי, כפי שניתן להשתמש בם תאים כאלה כדי ללמוד את ההיווצרות והומאוסטזיס של רקמות שלד. עם זאת, SVF של רקמת שומן נמלי הטרוגניות משמ?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

מחקר זה נתמך על ידי המכון הלאומי לבריאות מחקר המענק R01-DE021683-01 והמכונים הלאומי לבריאות מחקר מענק R01-DE019434 לMTL; מכון הרפואי הווארד יוז מחקר מלגה לMTCDCW נתמכה על ידי ACS פרנקלין מרטין הפקולטה למחקר המלגה, המעבדה Hagey לילדי רפואת רגנרטיבית, והפקולטה Scholar פרס אוניברסיטת סטנפורד מכון מחקר לבריאות הילד.

Materials

Name of Reagent/Material Company Catalog Number Comments
Disposable 250 mL Conical Tubes Corning (Thomas Scientific) 2602A43
Penicillin-Streptomycin (10,000 U/mL) Gibco 15140-122
DMEM, high glucose, GlutaMAX Supplement Gibco 10566-016
PBS, pH 7.4 Gibco 10010-023
Betadine – Antiseptic Povidone/Iodine Solution Purdue  PFC-67618015017
Hank's Balanced Salt Solution, 1X Cellgro 21-023-CV
Fetal Bovine Serum, Certified, US Origin Gibco 16000-044
Collagenase from Clostridium histolyticum Sigma-Aldrich C0130-5G
ACCUTASE Cell Detachment Solution Stem Cell Technologies 7920
APC Mouse Anti-Human CD90 BD Pharmingen 559869
FITC Mouse anti-Human CD105 (Endoglin) BD Pharmingen 561443
Anti-Human CD45 eFluor 450 (Pacific Blue replacement)  eBioscience 48-9459-41
Anti-Human CD34 APC eBioscience 17-0349-41
Anti-Human CD31 (PECAM-1) PE eBioscience 12-0319-41
Streptavidin PE-Cyanine7 eBioscience 25-4317-82
BD FACS Aria II instrument BD Biosciences
BD FACSDiva Software BD Biosciences

References

  1. Narsinh, K. H., et al. Single cell transcriptional profiling reveals heterogeneity of human induced pluripotent stem cells. J Clin Invest. 121, 1217-1221 (2011).
  2. Thorsen, T., Maerkl, S. J., Quake, S. R. Microfluidic large-scale integration. Science. 298, 580-584 (2002).
  3. Warren, L., Bryder, D., Weissman, I. L., Quake, S. R. Transcription factor profiling in individual hematopoietic progenitors by digital RT-PCR. Proc Natl Acad Sci U S A. 103, 17807-17812 (2006).
  4. Warren, L. A., et al. Transcriptional instability is not a universal attribute of aging. Aging Cell. 6, 775-782 (2007).
  5. Aalami, O. O., et al. Applications of a mouse model of calvarial healing: differences in regenerative abilities of juveniles and adults. Plast Reconstr Surg. 114, 713-720 (2004).
  6. Levi, B., et al. CD105 protein depletion enhances human adipose-derived stromal cell osteogenesis through reduction of transforming growth factor beta1 (TGF-beta1) signaling. The Journal of biological chemistry. 286, 39497-39509 (2011).
  7. Chen, X. D., Qian, H. Y., Neff, L., Satomura, K., Horowitz, M. C. Thy-1 antigen expression by cells in the osteoblast lineage. J Bone Miner Res. 14, 362-375 (1999).
  8. Malladi, P., Xu, Y., Yang, G. P., Longaker, M. T. Functions of vitamin D, retinoic acid, and dexamethasone in mouse adipose-derived mesenchymal cells. Tissue engineering. 12, 2031-2040 (2006).
  9. Levi, B., et al. Depot-specific variation in the osteogenic and adipogenic potential of human adipose-derived stromal cells. Plastic and reconstructive surgery. 126, 822-834 (2010).
  10. James, A. W., et al. Estrogen/estrogen receptor alpha signaling in mouse posterofrontal cranial suture fusion. PloS one. 4, e1720 (2009).
  11. Locke, M., Feisst, V., Dunbar, P. R. Concise review: human adipose-derived stem cells: separating promise from clinical need. Stem Cells. 29, 404-411 (2011).
  12. Glotzbach, J. P., et al. An Information Theoretic, Microfluidic-Based Single Cell Analysis Permits Identification of Subpopulations among Putatively Homogeneous Stem Cells. PLoS One. 6, e21211 (2011).
  13. Zhu, M., Heydarkhan-Hagvall, S., Hedrick, M., Benhaim, P., Zuk, P. Manual isolation of adipose-derived stem cells from human lipoaspirates. J. Vis. Exp. , e50585 (2013).
  14. Mitchell, J. B., et al. Immunophenotype of human adipose-derived cells: temporal changes in stromal-associated and stem cell-associated markers. Stem Cells. 24, 376-385 (2006).
  15. McMurray, R. J., et al. Nanoscale surfaces for the long-term maintenance of mesenchymal stem cell phenotype and multipotency. Nat Mater. 10, 637-644 (2011).
  16. Katz, A. J., Tholpady, A., Tholpady, S. S., Shang, H., Ogle, R. C. Cell surface and transcriptional characterization of human adipose-derived adherent stromal (hADAS) cells. Stem Cells. 23, 412-423 (2005).
  17. McIntosh, K., et al. The immunogenicity of human adipose-derived cells: temporal changes in vitro. Stem Cells. 24, 1246-1253 (2006).
  18. Choudhery, M. S., Badowski, M., Muise, A., Pierce, J., Harris, D. T. Donor age negatively impacts adipose tissue-derived mesenchymal stem cell expansion and differentiation. Journal of translational medicine. 12, 8 (2014).
  19. Yoshimura, K., Suga, H., Eto, H. Adipose-derived stem/progenitor cells: roles in adipose tissue remodeling and potential use for soft tissue augmentation. Regenerative medicine. 4, 265-273 (2009).
  20. Chung, M. T., et al. CD90 (Thy-1) Positive Selection Enhances Osteogenic Capacity of Human Adipose-Derived Stromal Cells. Tissue Eng Part A. , (2012).

Play Video

Cite This Article
Zielins, E. R., Tevlin, R., Hu, M. S., Chung, M. T., McArdle, A., Paik, K. J., Atashroo, D., Duldulao, C. R., Luan, A., Senarath-Yapa, K., Walmsley, G. G., Wearda, T., Longaker, M. T., Wan, D. C. Isolation and Enrichment of Human Adipose-derived Stromal Cells for Enhanced Osteogenesis. J. Vis. Exp. (95), e52181, doi:10.3791/52181 (2015).

View Video