The transcriptional heterogeneity within human adipose-derived stromal cells can be defined on the single cell level using cell surface markers and osteogenic genes. We describe a protocol utilizing flow cytometry for the isolation of cell subpopulations with increased osteogenic potential, which may be used to enhance craniofacial skeletal reconstruction.
Bone marrow-derived mesenchymal stromal cells (BM-MSCs) are considered the gold standard for stem cell-based tissue engineering applications. However, the process by which they must be harvested can be associated with significant donor site morbidity. In contrast, adipose-derived stromal cells (ASCs) are more readily abundant and more easily harvested, making them an appealing alternative to BM-MSCs. Like BM-MSCs, ASCs can differentiate into osteogenic lineage cells and can be used in tissue engineering applications, such as seeding onto scaffolds for use in craniofacial skeletal defects. ASCs are obtained from the stromal vascular fraction (SVF) of digested adipose tissue, which is a heterogeneous mixture of ASCs, vascular endothelial and mural cells, smooth muscle cells, pericytes, fibroblasts, and circulating cells. Flow cytometric analysis has shown that the surface marker profile for ASCs is similar to that for BM-MSCs. Despite several published reports establishing markers for the ASC phenotype, there is still a lack of consensus over profiles identifying osteoprogenitor cells in this heterogeneous population. This protocol describes how to isolate and use a subpopulation of ASCs with enhanced osteogenic capacity to repair critical-sized calvarial defects.
The heterogeneous nature of stem cell populations is not yet fully understood and remains a major impediment to the development of clinically effective stem cell-based therapeutic applications. One of the most common ways to characterize a heterogeneous population of stem cells is to employ a cell sorting method, such as fluorescence-activated cell sorting (FACS), to separate cells based on their surface marker expression profiles. As sorting methods become more complex, it becomes possible to identify more distinct functional subpopulations of cells. Microfluidic-based technologies are becoming more and more frequently utilized in analysis of gene expression at the single cell level. Multiplexed quantitative polymerase chain reaction (qPCR) within a microfluidic chip allows for effective and reliable high-resolution, single cell transcriptional analysis.1-5
In a previous study using single cell transcriptional profiling of 48 genes, considerable transcriptional heterogeneity was observed among ASCs.6 However, the distribution of genes MSX2, BMP-5, BMP-7, ALP, OCN, RUNX2 exhibited a strong association with a cluster of cells possessing highly osteogenic transcriptional profiles. To isolate cells according to this osteogenic gene expression profile, surface antigen expression patterns were correlated with transcription patterns and surface marker expression of endoglin (CD105) was subsequently discovered to closely correlate with enhanced osteogenic differentiation potential of ASCs. Independent of CD105 expression, expression of surface receptor Thy-1 (CD90), a glycosyl-phosphatidylinositol-linked membrane protein previously shown by Chen et al. to be associated with osteoprogenitor cells, was also correlated with osteogenic gene expression.6,7 These findings provide the opportunity to prospectively isolate subpopulations within the larger heterogeneous pool of ASCs with increased osteogenic capacity for cell-based bone tissue engineering applications.
現在、ヒト脂肪組織のSVFからASCの均質な亜集団の単離は、望ましい目標ものの依然として厳しい。このような細胞は、骨格組織の形成および恒常性を研究するために使用することができるようにプロ骨形成ASC亜集団の単離は、特に望ましい。しかし、脂肪組織のSVFは、セル容量と分化能を食い止めるに関して有意な異質性を保有する。11この異質性の分子基盤は、細胞のプールされた…
The authors have nothing to disclose.
この研究は、MTLに健康研究助成R01-DE021683-01と健康研究助成金R01-DE019434の国立衛生研究所の国立研究所によってサポートされていました。 MTCDCWにハワード·ヒューズ医学研究所研究員は、ACSフランクリン·マーティン学部研究フェローシップ、小児再生医療のためのHagey研究所、スタンフォード大学小児保健研究所学部奨学生賞によってサポートされていました。
Name of Reagent/Material | Company | Catalog Number | Comments |
Disposable 250 mL Conical Tubes | Corning (Thomas Scientific) | 2602A43 | |
Penicillin-Streptomycin (10,000 U/mL) | Gibco | 15140-122 | |
DMEM, high glucose, GlutaMAX Supplement | Gibco | 10566-016 | |
PBS, pH 7.4 | Gibco | 10010-023 | |
Betadine – Antiseptic Povidone/Iodine Solution | Purdue | PFC-67618015017 | |
Hank's Balanced Salt Solution, 1X | Cellgro | 21-023-CV | |
Fetal Bovine Serum, Certified, US Origin | Gibco | 16000-044 | |
Collagenase from Clostridium histolyticum | Sigma-Aldrich | C0130-5G | |
ACCUTASE Cell Detachment Solution | Stem Cell Technologies | 7920 | |
APC Mouse Anti-Human CD90 | BD Pharmingen | 559869 | |
FITC Mouse anti-Human CD105 (Endoglin) | BD Pharmingen | 561443 | |
Anti-Human CD45 eFluor 450 (Pacific Blue replacement) | eBioscience | 48-9459-41 | |
Anti-Human CD34 APC | eBioscience | 17-0349-41 | |
Anti-Human CD31 (PECAM-1) PE | eBioscience | 12-0319-41 | |
Streptavidin PE-Cyanine7 | eBioscience | 25-4317-82 | |
BD FACS Aria II instrument | BD Biosciences | ||
BD FACSDiva Software | BD Biosciences |