Summary

小鼠多巴胺能神经元的原代培养

Published: September 08, 2014
doi:

Summary

Dopaminergic neurons play a vital regulatory role in the brain. Their loss is associated with Parkinson’s disease. In this video, we show how to generate primary cultures of central dopaminergic neurons from embryonic mouse mesencephalon. Such cultures are useful to study the extreme vulnerability of these neurons to various stresses.

Abstract

多巴胺能神经元代表了在大脑中的神经元的总数的不到1%。这样低的神经元的数量调节重要脑部功能,如马达控制,动机和工作记忆。黑质纹状体多巴胺能神经元的选择性退化在帕金森氏病(PD)。这种渐进的神经元损失明确的病理症状电机(运动迟缓,静止性震颤和肌强直)有关。负责任的多巴胺能神经元退变主要代理仍是未知数。然而,这些神经元似乎是在各种条件下非常脆弱。原代培养物构成的最相关的模型之一来调查性能和多巴胺能神经元的特征。这些培养物可以以阻止或减缓神经元变性提交模仿PD病理各种应激剂和神经保护性化合物。 PD的大量的转基因小鼠模型中对已根儿在过去十年中ATED进一步增加研究者对多巴胺能神经元培养物的兴趣。在这里,视频协议侧重于胚胎小鼠大脑的细腻解剖。腹侧的精确切除是至关重要的,获得神经元培养足够丰富的多巴胺能细胞,使随后的研究。此协议可实现与胚胎转基因小鼠,并适合免疫荧光染色,定量PCR,第二信使量化,或神经元死亡/存活评估。

Introduction

多巴胺,基本脑神经递质1,2中的一个,主要是释放由脑多巴胺能(DA)神经元。大多数DA能神经元位于中脑2-6的腹侧部分。概略地,中脑多巴胺神经元可在三个解剖和功能划分不同的投影系统:mesostriatal,中脑边缘和mesocortical通路2,5。黑质纹状体通路参与运动行为,中脑边缘通路在加强,动机和学习中发挥重要作用,而多巴胺能途径投射到额叶前部皮质有牵连的认知2。

多巴胺神经元参与了几个人的神经系统疾病如精神分裂症,注意力不足,过度活动症和帕金森氏病(PD)2,4。帕金森病的特点是DA能神经元的进行性和选择性变性连接黑质致密部(SNC)的纹状体。的黑质-纹状体多巴胺神经元的结果在纹状体严重多巴胺耗竭的损失,是负责对帕金森病的运动症状(运动迟缓,静止性震颤,和刚性)7。的特发性帕金森病的初始原因尚未确定与当前治疗是唯一的症状,目的是恢复的多巴胺水平在纹状体。最常用的处方药物是左旋多巴(左旋多巴),多巴胺的前体自然。尽管左旋多巴的给药补偿多巴胺在一定时间内的损耗,运动并发症后发生的长期治疗(运动障碍和开/关状态)8,9。

研究多巴胺能神经元和PD是在不断发展和正在作出巨大努力来开发基于细胞移植,基因治疗,或神经保护剂10,11治疗。然而,一个重要问题仍然是非阐明:什么是极端vulnerab的原因DA能神经元的能性?部分答案可以在DA能神经元的活性被发现。在DA能神经元的兴奋性电活动和减速似乎增加他们的倾向退化12。然而,帕金森病发病机制的复杂性,需要进一步研究,以确定神经元变性13-15参与多巴胺的机制。

小学文化,特别是有关研究多巴胺神经元的特性16-19和对神经保护剂20-24评估挑战这些神经元的各种压力。大鼠培养模型是最常用的,如大鼠胚胎中脑的解剖比较容易,比较用鼠标,以及较高量的神经元可以在大鼠中获得。然而,新一代的25病转基因小鼠模型大大提高了社区的神经学家小学文化,从鼠标26-29的兴趣。虽然文化公关从新生动物epared都可以使用,最好是它们的胚胎在有丝分裂后的阶段(E13.5的中脑的神经元)制备,当神经元都保留其分化能力。以下协议呈现在来自小鼠胚胎(E13.5),这是最困难的,制备原代培养物分离的脑的神经元。值得注意的是,我们提供了使用无血清培养基更好的重现性的协议。在培养制备物(夹层和机械解离)的两个最重要的步骤将被仔细地详述于相关联的视频。

Protocol

在这项工作中所用的小鼠照料并符合欧盟理事会(86/609 / EU)的使用实验动物的指导方针进行处理。 1,准备所需的解决方案库存解决方案 10X聚-L-鸟氨酸(巴解组织)溶液:称取10mg解放军氢溴酸盐(分子量= 30,000-70,000),溶于70毫升无菌水。筛选储存在-20℃下用0.2微米的针筒式过滤器,等分试样的溶液,和。 30%葡萄糖溶液:称取30克D(+) – 糖和无菌水?…

Representative Results

的中脑培养步骤的图示流程图如图1所示。简言之,从怀孕的瑞士小鼠收集E13.5胚胎后,腹侧被从整个胚胎解剖。在分离脑片段依次提交酶促消化和机械解离。解离的细胞,通过离心沉淀,重新悬浮在培养基中,并接种在预​​先包被12或24孔板中。将细胞保持15天不更换培养基。 腹侧中脑解剖的详细流程图,对应于步骤3.2中,示于图2。虚线红色线条表…

Discussion

这个协议提出必要从胚胎小鼠和免疫荧光法检测多巴胺能神经元的制备中脑的神经元的原代培养物的方法和试剂。关键步骤的程序是在胚胎的清扫和收集的脑碎片的机械解离。高品质的解剖工具,有助于掌握解剖技术。 DA能神经元构成脑的一小部分。因此,收集的腹侧中脑的右侧部分是必不可少的,以获得含有多巴胺神经元的2-4%的培养。机械解离应仔细并轻轻进行。如果文化包含集群的非游离?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

Supported by grants from CNRS and INSERM. PM acknowledges support from the Fondation pour la Recherche Médicale en France (Equipe FRM 2009). SC acknowledges support from the Fondation de France.

Materials

Fetal Bovine Serum Lonza 14-801F
DMEM 4.5g/L Glucose with L-Glutamine Lonza BE12-604F
0.05% Trypsin-EDTA (1X), Phenol Red  Life Technologies 25300-054
Penicillin-Streptomycin (10,000 U/mL) Life Technologies 15140122
L-glutamine, 200 mM Solution Life Technologies 25030123
Dulbecco’s Phosphate Buffered Saline Sigma-Aldrich  D8537
Dulbecco’s Modified Eagle’s Medium/Nutrient Mixture F-12 Ham Sigma-Aldrich  D0547 Powder
Laminin – 1 mg/mL in Tris buffered NaCl Sigma-Aldrich  L2020
Poly-L-Ornithine hydrobromide Sigma-Aldrich  P3655
Insulin from porcine pancreas Sigma-Aldrich  I5523
apo-Transferrin human Sigma-Aldrich  T1147
Putrescine dihydrochloride Sigma-Aldrich  P5780
Progesterone Sigma-Aldrich  P8783
Sodium selenite Sigma-Aldrich  S5261
HEPES Sigma-Aldrich  H4034 
Glycine Sigma-Aldrich  G7126 Stock solution 1M in water
Gelatin Sigma-Aldrich  G9391 Stock solution 2% (w/v) in water
Triton X-100 Sigma-Aldrich  T8532
Paraformaldehyde 16% in water Electron Microscopy Sciences RT 15710-S
Sodium hydrogen carbonate (NaHCO3) Merck Millipore 106329
D(+)-Glucose, Monohydrate Merck Millipore 4074-2
Hydrochloric acid – c(HCl) = 1 mol/l (1 N) Titripur Merck Millipore 109057
Sterile water – Aqua B. Braun Braun
Ethanol absolute NORMAPUR analytical reagent VWR 20821.321
Sterile Petri Dishes VWR 82050-566
Pasteur pipettes plain glass – Wilhem Ulbrich GdbR. VWR 612-2297
Counting chamber Malassez VWR 631-0975
Serum Acrodisc Syringe Filter with Supor Membrane, Sterile, GF/0.2 µm, 37 mm PALL Life science 4525
Surgical Scissors – Straight, sharp-sharp, 14.5 cm long Fine Science Tools 14002-14 To open the abdominal wall
Scissors – Straight, pointed, delicate, 10 cm long MORIA 4877A To open the uterine wall
Forceps – Curved, usual, serrated jaws 1 mm MORIA 2183 To manipulate embryos
Vannas Scissors – Curved, pointed, 7 mm blades MORIA MC50 To take out the mesencephalon
Ultra Fine Forceps – Curved, delicate, 13 cm long MORIA 9987 To remove meninges
BD BioCoat Poly-D-Lysine 24-well Multiwell Plates BD Bioscience 356414
BD Falcon 12-well Cell Culture Plate, flat-bottom with lid BD Bioscience 353043
SuperFrost Microscope Slides, Ground edges 90º MENZEL-GLÄSER AG00008032E
Precision cover glasses thickness No. 1.5H circular 18 mm Ø MARIENFELD 117580
Polyclonal Rabbit Anti-Microtubule-Associated Protein 2 (MAP2) Antibody Chemicon Millipore AB5622 1/200
Monoclonal Mouse Anti-Glutamate Decarboxylase (GAD67) Antibody, clone 1G10.2 Chemicon Millipore MAB5406 1/400
Monoclonal Rat Anti-Dopamine Transporter (DAT) Antibody, clone DAT-Nt  Chemicon Millipore MAB369 1/500
Monoclonal Mouse Anti-5-HT Antibody 1/8,000 – Generous gift from Yves Charnay (Swizerland, Yves.Charnay@hcuge.ch)
Goat Serum, New Zealand Origin Life Technologies 16210-064
Alexa Fluor 405 Goat Anti-Rabbit IgG (H+L) Antibody Life Technologies A-31556 1/200
Alexa Fluor 488 Goat Anti-Mouse IgG (H+L) Antibody Life Technologies A-11001 1/1000
Alexa Fluor 594 Goat Anti-Rat IgG (H+L) Antibody Life Technologies A-11007 1/1000
VECTASHIELD HardSet Mounting Medium Vector Laboratories H-1400
Stereomicroscope Carl Zeiss microscopy Stemi-2000C
Bunsen Burner FIREBOY VWR 451-0136

References

  1. Glowinski, J., Cheramy, A., Romo, R., Barbeito, L. Presynaptic regulation of dopaminergic transmission in the striatum. Cell Mol Neurobiol. 8, 7-17 (1988).
  2. Iversen, S. D., Iversen, L. L. Dopamine: 50 years in perspective. Trends Neurosci. 30, 188-193 (2007).
  3. Dahlstroem, A., Fuxe, K. Evidence for the Existence of Monoamine-Containing Neurons in the Central Nervous System I. Demonstration of Monoamines in the Cell Bodies of Brain Stem Neurons. Acta Physiol Scand Suppl. SUPPL. , 231-255 (1964).
  4. Chinta, S. J., Andersen, J. K. Dopaminergic neurons. Int J Biochem Cell Biol. 37, 942-946 (2005).
  5. Bjorklund, A., Dunnett, S. B. Dopamine neuron systems in the brain: an update. Trends Neurosci. 30, 194-202 (2007).
  6. Hegarty, S. V., Sullivan, A. M., O’Keeffe, G. W. Midbrain dopaminergic neurons: a review of the molecular circuitry that regulates their development. Dev Biol. 379, 123-138 (2013).
  7. Samii, A., Nutt, J. G., Ransom, B. R. Parkinson’s disease. Lancet. 363, 1783-1793 (2004).
  8. Santini, E., Heiman, M., Greengard, P., Valjent, E., Fisone, G. Inhibition of mTOR signaling in Parkinson’s disease prevents L-DOPA-induced dyskinesia. Sci Signal. 2, (2009).
  9. Ohlin, K. E., et al. Vascular endothelial growth factor is upregulated by L-dopa in the parkinsonian brain: implications for the development of dyskinesia. Brain. 134, 2339-2357 (2011).
  10. Obeso, J. A., et al. Missing pieces in the Parkinson’s disease puzzle. Nat Med. 16, 653-661 (2010).
  11. Cooper, O., et al. Pharmacological rescue of mitochondrial deficits in iPSC-derived neural cells from patients with familial Parkinson’s disease. Sci Transl Med. 4, (2012).
  12. Michel, P. P., Toulorge, D., Guerreiro, S., Hirsch, E. C. Specific needs of dopamine neurons for stimulation in order to survive: implication for Parkinson disease. FASEB J. 27, 3414-3423 (2013).
  13. Decressac, M., Volakakis, N., Bjorklund, A., Perlmann, T. NURR1 in Parkinson disease-from pathogenesis to therapeutic potential. Nat Rev Neurol. , (2013).
  14. Jouve, L., Salin, P., Melon, C., Le Goff, L. K. e. r. k. e. r. i. a. n. -. Deep brain stimulation of the center median-parafascicular complex of the thalamus has efficient anti-parkinsonian action associated with widespread cellular responses in the basal ganglia network in a rat model of Parkinson’s disease. J Neurosci. 30, 9919-9928 (2010).
  15. Hirsch, E. C., Jenner, P., Przedborski, S. Pathogenesis of Parkinson’s disease. Mov Disord. 28, 24-30 (2013).
  16. di Porzio, U., Daguet, M. C., Glowinski, J., Prochiantz, A. Effect of striatal cells on in vitro maturation of mesencephalic dopaminergic neurones grown in serum-free conditions. Nature. 288, 370-373 (1980).
  17. Denis-Donini, S., Glowinski, J., Prochiantz, A. Glial heterogeneity may define the three-dimensional shape of mouse mesencephalic dopaminergic neurones. Nature. 307, 641-643 (1984).
  18. Barbin, G., Mallat, M., Prochiantz, A. In vitro studies on the maturation of mesencephalic dopaminergic neurons. Dev Neurosci. 7, 296-307 (1985).
  19. Marey-Semper, I., Gelman, M., Levi-Strauss, M. A selective toxicity toward cultured mesencephalic dopaminergic neurons is induced by the synergistic effects of energetic metabolism impairment and NMDA receptor activation. J Neurosci. 15, 5912-5918 (1995).
  20. Salthun-Lassalle, B., Hirsch, E. C., Wolfart, J., Ruberg, M., Michel, P. P. Rescue of mesencephalic dopaminergic neurons in culture by low-level stimulation of voltage-gated sodium channels. J Neurosci. 24, 5922-5930 (2004).
  21. Toulorge, D., et al. Neuroprotection of midbrain dopamine neurons by nicotine is gated by cytoplasmic Ca2. FASEB J. 25, 2563-2573 (2011).
  22. Rousseau, E., Michel, P. P., Hirsch, E. C. The Iron-Binding Protein Lactoferrin Protects Vulnerable Dopamine Neurons from Degeneration by Preserving Mitochondrial Calcium Homeostasis. Mol Pharmacol. 84, (2013).
  23. Orme, R. P., Bhangal, M. S., Fricker, R. A. Calcitriol imparts neuroprotection in vitro to midbrain dopaminergic neurons by upregulating GDNF expression. PLoS One. 8 (e62040), (2013).
  24. Choi, W. S., Kruse, S. E., Palmiter, R. D., Xia, Z. Mitochondrial complex I inhibition is not required for dopaminergic neuron death induced by rotenone, MPP+, or paraquat. Proc Natl Acad Sci U S A. 105, 15136-15141 (2008).
  25. Trancikova, A., Ramonet, D., Moore, D. J. Genetic mouse models of neurodegenerative diseases. Prog Mol Biol Transl Sci. 100, 419-482 (2011).
  26. Gao, H. M., Liu, B., Zhang, W., Hong, J. S. Critical role of microglial NADPH oxidase-derived free radicals in the in vitro MPTP model of Parkinson’s disease. FASEB J. 17, 1954-1956 (2003).
  27. Lin, X., et al. Conditional expression of Parkinson’s disease-related mutant alpha-synuclein in the midbrain dopaminergic neurons causes progressive neurodegeneration and degradation of transcription factor nuclear receptor related 1. J Neurosci. 32, 9248-9264 (2012).
  28. Bye, C. R., Thompson, L. H., Parish, C. L. Birth dating of midbrain dopamine neurons identifies A9 enriched tissue for transplantation into parkinsonian mice. Exp Neurol. 236, 58-68 (2012).
  29. Ramonet, D., et al. Dopaminergic neuronal loss, reduced neurite complexity and autophagic abnormalities in transgenic mice expressing G2019S mutant LRRK2. PLoS One. 6 (e18568), (2011).
  30. Prestoz, L., Jaber, M., Gaillard, A. Dopaminergic axon guidance: which makes what. Front Cell Neurosci. 6, (2012).
  31. Nunes, I., Tovmasian, L. T., Silva, R. M., Burke, R. E., Goff, S. P. Pitx3 is required for development of substantia nigra dopaminergic neurons. Proc Natl Acad Sci U S A. 100, 4245-4250 (1073).
  32. Ferri, A. L., et al. Foxa1 and Foxa2 regulate multiple phases of midbrain dopaminergic neuron development in a dosage-dependent manner. Development. 134, 2761-2769 (2007).
  33. Rayport, S., et al. Identified postnatal mesolimbic dopamine neurons in culture: morphology and electrophysiology. J Neurosci. 12, 4264-4280 (1992).
  34. Kim, K. M., Nakajima, S., Nakajima, Y. Dopamine and GABA receptors in cultured substantia nigra neurons: correlation of electrophysiology and immunocytochemistry. Neuroscience. 78, 759-769 (1997).
  35. Nefzger, C. M., et al. Lmx1a allows context-specific isolation of progenitors of GABAergic or dopaminergic neurons during neural differentiation of embryonic stem cells. Stem Cells. 30, 1349-1361 (2012).
  36. Su, H., et al. Immediate expression of Cdh2 is essential for efficient neural differentiation of mouse induced pluripotent stem cells. Stem Cell Res. 10, 338-348 (2013).

Play Video

Cite This Article
Gaven, F., Marin, P., Claeysen, S. Primary Culture of Mouse Dopaminergic Neurons. J. Vis. Exp. (91), e51751, doi:10.3791/51751 (2014).

View Video