Dieses Verfahren ergibt telencephalen Neuronen durch Durchlaufen Kontrollpunkten, die ähnlich wie beim menschlichen Entwicklung beobachtet werden, sind. Die Zellen werden dürfen spontan zu differenzieren, sind Faktoren, die beide gegenüber der neuronalen Abstammungslinie schieben ausgesetzt, werden isoliert, und werden auf Deckgläschen ausplattiert, um die terminale Differenzierung und Reifung zu ermöglichen.
Hier hat sich ein schrittweises Vorgehen für die effiziente Erzeugung telencephalen glutamatergen Neuronen aus humanen pluripotenten Stammzellen (PSCs) beschrieben worden. Die Unterscheidung wird durch Brechen der menschlichen PSCs zu Klumpen, die sich rund um Aggregate zu bilden, wenn die Zellen in einer Suspensionskultur platziert initiiert. Die Aggregate werden dann in hESC Medium aus den Tagen 1-4 gewachsen für spontane Differenzierung zu ermöglichen. Während dieser Zeit haben die Zellen die Fähigkeit, einem der drei Keimblätter werden. Von Tag 5-8, werden die Zellen in einem neuronalen Induktionsmedium platziert, um sie in das neuronale Linie zu drücken. Um Tag 8 werden die Zellen erlaubt, auf Platten mit 6 Vertiefungen befestigen und differenzieren während welcher Zeit die Neuroepithelzellen Form. Diese Neuroepithelzellen kann am Tag 17 isoliert werden. Die Zellen können dann als Neurosphären gehalten werden, bis sie bereit sind, auf Deckgläser plattiert werden. Verwendung eines basischen Medium ohne Faktoren caudalizing sind Neuroepithelzellen specified in telencephalen Vorstufen, die dann weiter in dorsale telencephalen Progenitoren und glutamatergen Neuronen effizient differenziert werden kann. Insgesamt bietet unserem System ein Werkzeug für die menschliche glutamatergen Neuronen für Forscher erzeugen, um die Entwicklung dieser Neuronen und der Krankheiten, die sie betreffen, zu studieren.
Menschlichen pluripotenten Stammzellen (PSCs), einschließlich der beiden humanen embryonalen Stammzellen (hES) und induzierten pluripotenten Stammzellen (iPS), haben die Fähigkeit, jeden Zelltyp des Körpers, einschließlich Neuronen 1-3 generieren. Gerichteten Differenzierung verschiedener neuronaler Subtypen aus humanen PSCs hält den Schlüssel für die Anwendung dieser Zellen in der regenerativen Medizin. Die Erzeugung von funktionellen neuronalen Subtypen während der Entwicklung ist ein komplexer Prozess, der die Induktion der neuronale Linie, die Spezifikation des regionalen Progenitoren entlang der rostro-kaudalen Achse und die Differenzierung von post-mitotischen Neuronen Typen aus den regionalen Progenitoren 4,5. Beginnend im Jahr 2001 wurden mehrere Systeme eingerichtet, um neuronale Linie von hES-Zellen, die eine Plattform zur Verfügung gestellt haben für die nachfolgende Generation von neuronalen Subtypen 6,7 generieren. Basierend auf Entwicklungsprinzipien, mehrere Neuronen-Typen wie spinalen motorischen Neuronen 8-12, Mittelhirn dopaminerge Neuronen 13-15, und neuronale Zellen der Netzhaut 16,17 wurden effizient von Mensch PSCs angegeben. Dies wurde durch die Anwendung kritischen Morphogene, die wichtig sind für die Spezifikation von diesen Neuronen-Typen während in vivo Entwicklung getan. Andere Protokolle sind auch entwickelt worden, um die Differenzierung zu Neuronen hESCs Verwendung von entweder 18 bis 20 zusätzliche Faktoren wie kleine Moleküle oder durch Co-Kultivierung mit anderen Zelltypen, um Differenzierung fördern 21 fördern.
Die menschlichen Neokortex ist hoch entwickelt und enthält viele Zelltypen, einschließlich glutamatergen Neuronen, die eine wichtige Rolle beim Lernen, Gedächtnis und kognitive Funktion 22,23 spielen. Der erste Schritt beim Erzeugen glutamatergen Neuronen in Kultur zu telencephalen Vorläuferzellen angeben. Yoshiki Sasai der Gruppe erstmals über die gerichtete Differenzierung von Vorläufern von Maus telencephalen WSR (mESCs) unter Verwendung eines serumfreien suspension Kultur in Gegenwart DKK1 (was hemmt Wnt-Signalisierung) sowie LeftyA (die Signalisierung hemmt nodalen) 24. Anschließend wurden mehrere Gruppen einschließlich Siemens auch die Spezifikation telencephalen Vorstufen aus menschlichem PSCs in serumfreiem Medium 25-27 berichtet. Die Erzeugung von telencephalen Vorstufen aus menschlichem PSCs erfordert nicht die Verwendung von exogenen Morphogene und die Effizienz bei der Erzeugung dieser Vorstufen ist viel höher als die aus mESCs 26,27. Hier hat sich ein chemisch definiertes System zur Induktion neuronalen die gut an Zhangs Gruppe 7 wurde festgestellt, beschrieben worden. Ohne den Zusatz von exogenen caudalizing Faktoren, dieses Protokoll effizient generiert telencephalen Vorstufen aus menschlichen PSCs 27. Diese Vorläuferzellen können dann in dorsalen oder ventralen Vorläuferzellen durch die Regelung der Signalisierung von Wnt-und Sonic-Hedgehog (SHH) unterschieden werden. Die dorsalen Vorläuferzellen können weiter in glutamatergen Neuronen e unterscheidenfficiently 27. Zusätzlich dieses Protokoll funktioniert auch gut für die Erzeugung von glutamatergen Neuronen aus menschlichem IPSCs 28, die zur Erzeugung von patientenspezifischer Neuronen, die verwendet werden, um den Wirkungsmechanismus sowie mögliche Therapien für eine große Reihe von Krankheiten zu erforschen ueber ermöglicht . Außerdem ist unser System bietet auch eine Plattform für die Entwicklung und Spezifikation der verschiedenen neuronalen Typen im Telencephalon erkunden.
Es gibt mehrere wichtige Schritte während der neuronalen Differenzierung. Es ist wichtig sicherzustellen, dass die menschlichen pluripotenten PSCs sind, weil ansonsten die Zellen können bereits auf dem Weg zu einem nicht-neuronalen Abstammungslinie vorgespannt werden. Dies kann durch Anfärben der menschlichen PSCs mit Antikörpern gegen Pluripotenz Marker wie Oct4, Sox2, Nanog und Tra-1-60 1-3 bestätigt werden. Wenn die Menschen PSCs nicht sehr gut anbringen müssen nach Passagierung ihnen können ROCK-In…
The authors have nothing to disclose.
Die Autoren bedanken sich bei Dr. Y. Sasai für die großzügige Bereitstellung der FOXG1 Antikörper danken. Diese Arbeit wurde von Connecticut Stem Cell Research Grants (08-SCB-UCHC- 022 und 11-SCB24) und spastische Paraplegie Foundation unterstützt.
Reagent | Supplier | Catalog # |
Dulbecco’s modified eagle medium with F12 nutrient mixture (DMEM/F12) | Gibco | 11330-032 |
Knockout Serum Replacer | Gibco | 10828-028 |
L-glutamine (200 mM) | Gibco | 25030 |
Non Essential Amino Acids | Gibco | 1140-050 |
2-Mercaptoethanol (14.3 M) | Sigma | M-7522 |
Neurobasal medium | Gibco | 21103-049 |
N2 | Gibco | 17502-048 |
B27 | Gibco | 12587-010 |
Heparin | Sigma | H3149 |
Poly-L-ornithine hydrobromide (polyornithine) | Sigma | 116K5103 |
Laminin (human) | Sigma | L-6274 |
Laminin (mouse) | Invitrogen | 23017-015 |
FBS | Gemini | 100-106 |
Bovine serum albumin (BSA) | Sigma | A-7906 |
Dispase | Gibco | 17105-041 |
Collagenase | Invitrogen | 17104-019 |
Accutase | Innovative Cell Technologies | AT104 |
ROCK Inhibitor | Stemgent | 04-0012 |
SB431542 | Stemgent | 04-0010 |
Dorsomorphin | Stemgent | 04-0024 |
Fibroblast growth factor 2 (FGF2, bFGF) | Invitrogen | 13256-029 |
Trypsin inhibitor | Gibco | 17075 |
0.1% gelatin | Millipore | ES-006-B |
Foxg1 antibody | Dr. Y. Sasai | |
Hoxb4 antibody (1:50) | Developmental Studies Hybridoma Bank | I12 |
Pax6 antibody (1:5000) | Developmental Studies Hybridoma Bank | PAX6 |
Nkx2.1 antibody (1:200) | Chemicon | MAB5460 |
Tbr1 antibody (1:2000) | Chemicon | AB9616 |
vGLUT1 antibody (1:100) | Synaptic Systems | 135302 |
Brain derived neurotrophic factor (BDNF) | PrepoTech Inc. | 450-02 |
Glial derived neurotrophic factor (GDNF) | PrepoTech Inc. | 450-10 |
Insulin growth factor 1 (IGF1) | PrepoTech Inc. | 100-11 |
Cyclic AMP (cAMP) | Sigma | D-0260 |
Sonic hedgehog (SHH) | R&D | 1845-SH |
50 ml tubes | Becton Dickinson (BD) | 352098 |
15 ml tubes | BD | 352097 |
6 well plates | BD | 353046 |
24 well plates | BD | 353047 |
T25 flasks (untreated) | BD | 353009 |
T75 flasks (untreated) | BD | 353133 |
Coverslips | Chemiglass Life Sciences | 1760-012 |
6 cm Petri dishes | BD | 353004 |
9” glass pipetes | Fisher | 13-678-20D |
Steriflip filters (0.22 μM) | Millipore | SCGP00525 |
Stericup filters 1,000 ml (0.22 μM) | Millipore | SCGPU10RE |
Phase contrast microscope (Observer A1) | Zeiss | R2625 |
Carbon dioxide incubator (Hera Cell 150) | Thermo Electron Corporation | |
Biosafety hood (Sterilgard III Advance) | The Baker Company | |
Centrifuge (5702 R) | Eppendorf |