Summary

在急性 LCMV 感染小鼠中获得病毒特异性滤泡辅助性 CD4 + T 细胞的早期分化

Published: April 26, 2024
doi:

Summary

目前的研究展示了评估病毒特异性 TFH 细胞的早期命运承诺和操纵这些细胞中基因表达的方案。

Abstract

滤泡辅助性 T (TFH) 细胞被认为是一种独立的 CD4+ T 细胞谱系,可帮助同源 B 细胞产生高亲和力抗体,从而建立长期体液免疫。在急性病毒感染期间,病毒特异性 TFH 细胞的命运承诺在感染早期就确定了,早期分化的 TFH 细胞的研究对于了解 T 细胞依赖性体液免疫和优化疫苗设计至关重要。在这项研究中,使用急性淋巴细胞性脉络丛脑膜炎病毒 (LCMV) 感染的小鼠模型和具有特异性识别 LCMV 糖蛋白表位 I-AbGP66-77 的 CD4+ T 细胞的 TCR 转基因 SMARTA (SM) 小鼠,我们描述了基于流式细胞术染色的病毒特异性 TFH 细胞的早期命运承诺的程序。此外,通过利用 SM CD4 + T 细胞的逆转录病毒转导,还提供了操纵早期分化病毒特异性 TFH 细胞中基因表达的方法。因此,这些方法将有助于探索病毒特异性 TFH 细胞早期定型机制的研究。

Introduction

遇到不同的病原体或威胁,初始 CD4+ T 细胞通过分化为具有特殊功能的各种辅助性 T (TH) 细胞亚群来定制其免疫反应1。在急性病毒感染的情况下,很大一部分幼稚 CD4+ T 细胞分化为滤泡辅助性 T (TFH) 细胞,为 B 细胞提供帮助 2,3与其他 CD4+ TH 细胞亚群(例如,TH1、TH2、TH9 和 TH17 细胞)不同,TFH 细胞表达大量 CXCR5,这是 B 细胞归巢趋化因子 CXCL13 的趋化因子受体,使 TFH 细胞能够迁移到 B 细胞滤泡中。在 B 细胞滤泡中,TFH 细胞协助同源 B 细胞启动和维持生发中心反应,从而能够快速产生高亲和力抗体和长期体液记忆 2,3

急性病毒感染后,病毒特异性 TFH 细胞的早期命运承诺发生在 72 小时内 4,5受转录抑制因子 B 细胞淋巴瘤-6 (Bcl-6)5,6,7,8 的控制,该细胞是控制 TFH 细胞命运决定的“主调节因子”。Bcl-6 的缺乏会严重减弱 TFH 细胞的分化,而异位 Bcl-6 的表达会显著促进 TFH 细胞的命运决定。除 Bcl-6 外,多个分子还参与指导早期 TFH 细胞命运定型。转录因子 TCF-1 和 LEF-1 通过诱导 Bcl-6 启动 TFH 细胞分化 9,10,11Bcl-6 和 TCF-1 对 Blimp1 的抑制是早期 TFH 细胞命运承诺所必需的11,12。STAT1 和 STAT3 也是早期 TFH 细胞分化所必需的13。此外,组蛋白甲基转移酶 EZH214,15 和 m6A 甲基转移酶 METTL316 的表观遗传修饰有助于稳定 TFH 细胞转录程序(尤其是 Bcl6Tcf7),从而引发早期 TFH 细胞命运承诺。虽然在理解早期 TFH 细胞命运承诺的转录和表观遗传调控方面取得了进展,包括上述分子和其他分子,在别处3 中总结,但以前未知的分子仍有待了解。

在急性淋巴细胞性脉络丛脑膜炎病毒 (LCMV) 感染的小鼠模型中,过继转移的同基因 TCR 转基因 SMARTA (SM) CD4+ T 细胞,特异性识别 LCMV 糖蛋白表位 I-AbGP66-77,在病毒感染期间经历 TFH 或 TH1 细胞分化。这种 TFH/TH1 分叉分化模式支持 SM/急性 LCMV 感染模型在研究病毒特异性 TFH 细胞生物学方面的进步。事实上,SM/急性 LCMV 感染模型已广泛应用于 TFH 细胞研究领域,并在 TFH 细胞生物学的里程碑性发现中发挥了至关重要的作用。这包括将上述 Bcl-6 鉴定为 TFH 细胞的谱系定义转录因子 5,6,以及其他重要的转录因子(例如,Blimp-16、TCF-1/LEF91011、STAT1/STAT313、STAT517、KLF218 和 Itch19)指导 TFH 细胞分化、转录后调节 (例如,TFH 细胞分化的 METTL316 和 miR-17~9220),TFH 细胞记忆和可塑性 21,22,以及针对 T FH 细胞的合理疫苗接种策略(例如,硒23)。

目前的研究描述了获取病毒特异性 TFH 细胞早期命运承诺的可重复方法,包括 (1) 建立适用于访问早期分化 TFH 细胞的急性 LCMV 感染的 SM 嵌合体小鼠模型,(2) 对与早期分化 TFH 细胞相关的分子进行流式细胞术染色,以及 (3) 在 SM CD4+ 中进行基于逆转录病毒载体的基因操作T 细胞。这些方法将有助于调查病毒特异性 TFH 细胞的早期命运承诺的研究。

Protocol

所有动物实验均按照第三军医大学机构动物护理和使用委员会批准的程序进行。本研究使用了以下小鼠品系:C57BL/6J (B6) 小鼠(男女),年龄 6 至 8 周龄,体重 25-30 克;CD45.1+SM TCR转基因小鼠(B6 CD45.1 × SM TCR转基因),两性,年龄6-8周龄,体重25-30 g;和 CXCR5-GFP CD45.1+SM TCR 转基因小鼠 (B6 CD45.1 × SM TCR 转基因 × CXCR5-GFP 敲入),两性,年龄 6 至 8 周,体重 25-30 g。转基因物种是在先?…

Representative Results

急性 LCMV 感染期间早期分化病毒特异性 TFH 细胞的特征为了探测病毒特异性 TFH 细胞的早期命运承诺,将特异性识别 LCMV GP 表位 I-AbGP66-77 的幼稚同源 SM CD4 + T 细胞过继转移到 CD45.2 + C57BL/6 受体中。第二天,这些接受者被静脉注射高剂量的急性缓解的 LCMV Armstrong 感染(图 1A)。感染后第 3 天,通过流式细胞术分?…

Discussion

自从发现 TFH 细胞在帮助 B 细胞方面的特殊功能以来,TFH 细胞领域的研究一直备受关注。累积的研究表明,TFH 细胞分化是一个多阶段和多因素的过程30,其中 TFH 细胞命运承诺在早期确定5。因此,更好地了解早期分化 TFH 细胞的潜在机制对于 TFH 细胞生物学和合理的疫苗设计至关重要。在此,我们提供了通过利用…

Disclosures

The authors have nothing to disclose.

Acknowledgements

这项研究得到了中国国家自然科学基金(X.C. 的第 32300785 号)、中国国家创新人才博士后计划(第 1 号)的资助。BX20230449 至 X.C.),以及国家科技重大专项(编号 2021YFC2300602 至 L.Y.)。

Materials

0.25% Trypsin-EDTA Corning 25-052-CI
4% Paraformaldehyde Fix Solution, 4% PFA Beyotime P0099-500mL
70 μm cell strainer Merck CLS431751
Alexa Fluor 647 anti-mouse TCR Vα2 (clone B20.1) Biolegend 127812 1:200 dilution
Alexa Fluor 700 anti-mouse CD45.1 (clone A20) Biolegend 110724 1:200 dilution
APC anti-mouse CD25 (clone PC61) Biolegend 101910 1:200 dilution
B6 CD45.1 (B6.SJL-Ptprca Pepcb/BoyJ) mouse The Jackson Laboratory 002014
BeaverBeads Streptavidin Beaver 22321-10
Biotin anti-mouse F4/80 Antibody (clone BM8) Biolegend 123106 1:200 dilution
Biotin Rat anti-mouse CD11c (clone N418) Biolegend 117304 1:200 dilution
Biotin Rat anti-Mouse CD19 (clone 6D5) Biolegend 115504 1:200 dilution
Biotin Rat anti-Mouse CD8a (clone 53-6.7) Biolegend 100704 1:200 dilution
Biotin Rat anti-mouse NK-1.1 (clone PK136) Biolegend 108704 1:200 dilution
Biotin Rat anti-mouse TER-119/Erythroid Cells (clone TER-119) Biolegend 116204 1:200 dilution
bovine serum albumin, BSA Sigma A7906
Brilliant Violet 421 anti-T-bet (clone 4B10) Biolegend 644816 1:100 dilution
Brilliant Violet 605 anti-mouse CD279 (PD-1) (clone 29F.1A12) Biolegend 135220 1:200 dilution
C57BL/6J (B6) mouse The Jackson Laboratory 000664
CXCR5-GFP knock-in reporter mouse In house; the CXCR5-GFP knock-in mouse line was generated by the insertion of an IRES-GFP construct after the open reading frame of Cxcr5.
DMEM 10% medium DMEM medium containing 10% FBS
DMEM medium Gibco 11885092
EDTA Sigma E9884
FACSFortesa BD Biosciences
Fetal bovine serum, FBS Sigma F8318
FlowJo (version 10.4.0) BD Biosciences
Foxp3/Transcription Factor Staining Buffer Set Invitrogen 00-5523-00 The kit contains three reagents: a. Fixation/Permeabilization Concentrate (4X); b. Fixation / Permeabilization Diluent; c. Permeabilization Buffer.
Goat Anti-Rat IgG Antibody (H+L), Biotinylated Vector laboratories BA-9400-1.5 1:200 dilution
Invitrogen EVOS FL Auto Cell Imaging System ThermoFisher Scientific
Isolation buffer FACS buffer containing 0.5% BSA and 2mM EDTA
LCMV GP61-77 peptide (GLKGPDIYKGVYQFKSV) Chinese Peptide Company
LIVE/DEAD Fixable Near-IR Dead Cell Stain Kit, for 633 or 635 nm excitation Life Technologies L10199 1:200 dilution
MigR1 addgene #27490
NaN3 Sigma S2002
Opti-MEM medium Gibco 31985070
pCL-Eco addgene #12371
PE anti-mouse CD69 (clone H1.2F3) Biolegend 104508 1:200 dilution
PE Mouse anti-Bcl-6 (clone K112-91) BD Biosciences 561522 1:50 dilution
Phosphate buffered saline, PBS Gibco 10010072
Polybrene Solarbio H8761
Purified Rat Anti-Mouse CXCR5 (clone 2G8) BD Biosciences 551961 1:50 dilution
Rat monoclonal PerCP anti-mouse CD4 (clone RM4-5) Biolegend 100538 1:200 dilution
recombinant murine IL-2 Gibco 212-12-1MG
Red Blood Cell Lysis Buffer Beyotime C3702-500mL
RPMI 1640 medium Sigma R8758
RPMI 2% RPMI 1640 medium containing 2% FBS
SMARTA (SM) TCR transgenic mouse SM TCR transgenic line in our lab is a gift from Dr. Rafi Ahmed (Emory University). Additionally, this mouse line can also be obtained from The Jackson Laboratory (stain#: 030450).
Staining buffer PBS containing 2% FBS and 0.01% NaN3
Streptavidin PE-Cyanine7 eBioscience 25-4317-82 1:200 dilution
TCF1/TCF7 (C63D9) Rabbit mAb (Alexa Fluor 488 Conjugate)  Cell signaling technology 6444S 1:400 dilution
TFH cell staining buffer FACS buffer containing 1% BSA and 2% mouse serum
TransIT-293 reagent Mirus Bio MIRUMIR2700

References

  1. O’shea, J. J., Paul, W. E. Mechanisms underlying lineage commitment and plasticity of helper CD4+ T cells. Science. 327 (5969), 1098-1102 (2010).
  2. Crotty, S. T follicular helper cell biology: A decade of discovery and diseases. Immunity. 50 (5), 1132-1148 (2019).
  3. Vinuesa, C. G., Linterman, M. A., Yu, D., Maclennan, I. C. Follicular helper t cells. Annu Rev Immunol. 34, 335-368 (2016).
  4. Choi, Y. S., et al. ICOS receptor instructs T follicular helper cell versus effector cell differentiation via induction of the transcriptional repressor bcl6. Immunity. 34 (6), 932-946 (2011).
  5. Choi, Y. S., et al. Bcl6 expressing follicular helper CD4 T cells are fate committed early and have the capacity to form memory. J Immunol. 190 (8), 4014-4026 (2013).
  6. Johnston, R. J., et al. Bcl6 and BLIMP-1 are reciprocal and antagonistic regulators of T follicular helper cell differentiation. Science. 325 (5943), 1006-1010 (2009).
  7. Nurieva, R. I., et al. Bcl6 mediates the development of T follicular helper cells. Science. 325 (5943), 1001-1005 (2009).
  8. Yu, D., et al. The transcriptional repressor bcl-6 directs T follicular helper cell lineage commitment. Immunity. 31 (3), 457-468 (2009).
  9. Choi, Y. S., et al. LEF1 and TCF1 orchestrate T(FH) differentiation by regulating differentiation circuits upstream of the transcriptional repressor bcl6. Nat Immunol. 16 (9), 980-990 (2015).
  10. Wu, T., et al. TCF1 is required for the t follicular helper cell response to viral infection. Cell Rep. 12 (12), 2099-2110 (2015).
  11. Xu, L., et al. The transcription factor TCF-1 initiates the differentiation of T(FH) cells during acute viral infection. Nat Immunol. 16 (9), 991-999 (2015).
  12. Oestreich, K. J., Mohn, S. E., Weinmann, A. S. Molecular mechanisms that control the expression and activity of bcl-6 in th1 cells to regulate flexibility with a TFH-like gene profile. Nat Immunol. 13 (4), 405-411 (2012).
  13. Choi, Y. S., Eto, D., Yang, J. A., Lao, C., Crotty, S. Cutting edge: STAT1 is required for IL-6-mediated bcl6 induction for early follicular helper cell differentiation. J Immunol. 190 (7), 3049-3053 (2013).
  14. Chen, X., et al. The histone methyltransferase ezh2 primes the early differentiation of follicular helper T cells during acute viral infection. Cell Mol Immunol. 17 (3), 247-260 (2020).
  15. Li, F., et al. Ezh2 programs T(FH) differentiation by integrating phosphorylation-dependent activation of bcl6 and polycomb-dependent repression of p19ARF. Nat Commun. 9 (1), 5452 (2018).
  16. Yao, Y., et al. METTL3-dependent m(6)A modification programs T follicular helper cell differentiation. Nat Commun. 12 (1), 1333 (2021).
  17. Johnston, R. J., Choi, Y. S., Diamond, J., Yang, J. A., Crotty, S. STAT5 is a potent negative regulator of TFH cell differentiation. J Exp Med. 209 (2), 243-250 (2012).
  18. Lee, J. Y., et al. The transcription factor KLF2 restrains CD4+ T follicular helper cell differentiation. Immunity. 42 (2), 252-264 (2015).
  19. Xiao, N., et al. The e3 ubiquitin ligase itch is required for the differentiation of follicular helper t cells. Nat Immunol. 15 (7), 657-666 (2014).
  20. Baumjohann, D., et al. The microRNA cluster mir-17~92 promotes TFH cell differentiation and represses subset-inappropriate gene expression. Nat Immunol. 14 (8), 840-848 (2013).
  21. Wang, Y., et al. The kinase complex mTORC2 promotes the longevity of virus-specific memory CD4(+) T cells by preventing ferroptosis. Nat Immunol. 23 (2), 303-317 (2022).
  22. Hale, J. S., et al. Distinct memory CD4+ T cells with commitment to T follicular helper- and T helper 1-cell lineages are generated after acute viral infection. Immunity. 38 (4), 805-817 (2013).
  23. Yao, Y., et al. Selenium-GPX4 axis protects follicular helper t cells from ferroptosis. Nat Immunol. 22 (9), 1127-1139 (2021).
  24. Oxenius, A., Bachmann, M. F., Zinkernagel, R. M., Hengartner, H. Virus-specific MHC-class II-restricted TCR-transgenic mice: Effects on humoral and cellular immune responses after viral infection. Eur J Immunol. 28 (1), 390-400 (1998).
  25. Grosjean, C., et al. Isolation and enrichment of mouse splenic t cells for ex vivo and in vivo T cell receptor stimulation assays. STAR Protoc. 2 (4), 100961 (2021).
  26. Dowling, P., et al. Protocol for the bottom-up proteomic analysis of mouse spleen. STAR Protoc. 1 (3), 100196 (2020).
  27. Choi, Y. S., Crotty, S. Retroviral vector expression in TCR transgenic CD4+ T cells. Methods Mol Biol. 1291, 49-61 (2015).
  28. Wu, D., et al. A method for expansion and retroviral transduction of mouse regulatory T cells. J Immunol Methods. 488, 112931 (2021).
  29. He, R., et al. Follicular CXCR5- expressing CD8(+) T cells curtail chronic viral infection. Nature. 537 (7620), 412-428 (2016).
  30. Crotty, S. Follicular helper CD4 T cells (TFH). Annu Rev Immunol. 29, 621-663 (2011).
  31. Breitfeld, D., et al. Follicular B helper T cells express CXC chemokine receptor 5, localize to B cell follicles, and support immunoglobulin production. J Exp Med. 192 (11), 1545-1552 (2000).
  32. Xu, L., et al. The kinase mTORC1 promotes the generation and suppressive function of follicular regulatory t cells. Immunity. 47 (3), 538-551 (2017).
  33. Chen, X., et al. The phosphatase pten links platelets with immune regulatory functions of mouse T follicular helper cells. Nat Commun. 13 (1), 2762 (2022).
  34. Chen, J. S., et al. Flow cytometric identification of T(fh)13 cells in mouse and human. J Allergy Clin Immunol. 147 (2), 470-483 (2021).
This article has been published
Video Coming Soon
Keep me updated:

.

Cite This Article
Lin, Y., Yue, S., Yang, Y., He, J., Yang, X., Ye, L., Chen, X. Accessing Early Differentiation of Virus-Specific Follicular Helper CD4+ T Cell in Acute LCMV-Infected Mice. J. Vis. Exp. (206), e66752, doi:10.3791/66752 (2024).

View Video