Summary

监测雏鸡胚胎神经管闭合过程中组织的机械进化

Published: November 10, 2023
doi:

Summary

该协议旨在纵向监测雏鸡胚胎神经形成过程中神经板组织的机械性能。它基于布里渊显微镜和载物台孵化系统的集成,能够对 培养雏鸡胚胎中的神经板组织进行实时机械成像。

Abstract

神经管闭合(NTC)是胚胎发育过程中的关键过程。这一过程的失败会导致神经管缺陷,导致先天性畸形甚至死亡。NTC涉及遗传、分子和机械水平的一系列机制。虽然近年来机械调节已成为一个越来越有吸引力的话题,但由于缺乏合适的技术来 对原位进行 3D 胚胎组织的机械测试,它在很大程度上仍未得到探索。作为回应,我们开发了一种以非接触式和非侵入性方式量化鸡胚胎组织的机械性能的方案。这是通过将共聚焦布里渊显微镜与载物台孵育系统集成来实现的。为了探究组织力学,收集预培养的胚胎并将其转移到载物台培养箱中进行 卵外 培养。同时,布里渊显微镜在发育过程中的不同时间点采集神经板组织的机械图像。该协议包括样品制备的详细说明、布里渊显微镜实验的实施以及数据后处理和分析。通过遵循该协议,研究人员可以纵向研究胚胎组织在发育过程中的机械进化。

Introduction

神经管缺陷 (NTD) 是胚胎发育过程中神经管闭合 (NTC) 失败引起的严重中枢神经系统出生缺陷1。被忽视的热带病的病因很复杂。研究表明,NTC 涉及一系列形态发生过程,包括收敛延伸、神经板弯曲(例如,顶端收缩)、神经皱襞抬高以及最终神经襞的粘附。这些过程受多种分子和遗传机制调节2,3这些过程中的任何故障都可能导致NTDs4,5,6。随着越来越多的证据表明,机械线索在 NTC37891011 中也起着至关重要的作用,并且已经发现了基因和机械线索之间的关系 12,13,14,因此研究神经形成过程中的组织生物力学变得势在必行。

已经开发了几种用于测量胚胎组织机械性能的技术,包括激光消融 (LA)15、组织解剖和松弛 (TDR)16,17微量移液器抽吸 (MA)18、基于原子力显微镜 (AFM) 的纳米压痕19、微压痕器 (MI) 和微孔板 (MP)20、使用光学/磁镊的微流变学 (MR)212223和基于液滴的传感器24.现有方法可以在从亚细胞到组织尺度的空间分辨率下测量机械性能。然而,这些方法大多是侵入性的,因为它们需要与样品接触(例如,MA、AFM、MI 和 MP)、外部材料注射(例如,MR 和基于液滴的传感器)或组织解剖(例如,LA 和 TDR)。因此,现有方法在原位监测神经板组织的机械演化具有挑战性25。最近,混响光学相干弹性成像在具有高空间分辨率的非接触式机械映射方面显示出前景26

共聚焦布里渊显微镜是一种新兴的光学模式,能够以27282930 亚细胞分辨率对组织生物力学进行非接触式定量。布里渊显微镜基于自发布里渊光散射原理,即入射激光与材料内部热波动引起的声波之间的相互作用。因此,散射光会经历频率偏移,称为布里渊频移 ωR,公式为31

Equation 1 (1)

这里,Equation 2是材料的折射率,λ是入射光的波长,M’是纵向模量,ρ是质量密度,θ是入射光与散射光之间的角度。对于同类型的生物材料,折射率和密度Equation 3之比近似恒28,32,33,34,35,36。因此,布里渊位移可以直接用于估计生理过程中的相对机械变化。布里渊显微镜的可行性已在各种生物样品中得到验证29,37,38。最近,通过将布里渊显微镜与载物台孵化系统相结合,演示了活雏鸡胚胎的延时机械成像39。该协议提供了样品制备、实验实施以及数据后处理和分析的详细说明。我们希望这项工作将促进非接触式布里渊技术的广泛采用,以研究胚胎发育和出生缺陷中的生物力学调节。

Protocol

该协议已获得韦恩州立大学机构动物护理和使用委员会的批准。 1.实验准备 使用70%乙醇溶液清洁和消毒剪刀和镊子。此外,准备一次性移液器和注射器。 通过向 495 mL 去离子水中加入 3.595 g NaCl 来制备洗涤介质。然后,向培养基中加入5ml青霉素 – 链霉素(5U / mL)。用洗涤介质填充100毫米培养皿并将其加热至37°C。 根据 图 1</s…

Representative Results

图6 显示了布里渊显微镜的原理图。该系统采用660nm激光作为光源。在激光头的正后放置一个隔离器以抑制任何背向反射光,并使用中性密度 (ND) 滤光片来调节激光功率。一对焦距分别为 f1 = 16 mm 和 f2 = 100 mm 的透镜 L1 和 L2 用于扩展激光束。在偏振分束器(PBS)之后,使用半波板(HWP)和线性偏振器(偏振器1)来调节照射在样品或校准材料(即水和甲醇)上的光束功率。?…

Discussion

胚胎的早期发育很容易受到外界干扰的影响。因此,在样品提取和转移过程中需要格外小心。一个潜在的问题是胚胎从滤纸上脱落,这可能导致卵黄膜收缩,并导致布里渊成像中神经板的倾斜伪影。此外,这种收缩可能会阻止胚胎的发育。应注意防止分离的几个关键步骤。首先,在步骤2.4中,确保从膜表面彻底去除蛋白至关重要。任何残留的蛋白都会阻碍膜与滤纸46,47<su…

Disclosures

The authors have nothing to disclose.

Acknowledgements

这项工作得到了美国国立卫生研究院(K25HD097288,R21HD112663)尤尼斯·肯尼迪·施莱弗国家儿童健康与人类发展研究所的支持。

Materials

100 mm Petri dish  Fisherbrand FB0875713
2D motorized stage  Prior Scientific H117E2
35 mm Petri dish World Precision Instruments FD35-100
Brillouin Microscope with on-stage incubator N/A N/A This is a custom-built Brillouin Microscope system based on Ref. 30
Chicken eggs University of Connecticut N/A
CMOS camera Thorlabs CS2100M-USB
EMCCD camera Andor iXon
Ethanol Decon Laboratories, Inc. #2701
Filter paper Whatman 1004-070
Incubator for in ovo culture GQF Manufacturing Company Inc.  GQF 1502 
Ring Thorlabs SM1RR
Microscope body Olympus IX73
NaCl Sigma-Aldrich S9888
On-stage incubator Oko labs OKO-H301-PRIOR-H117
Parafilm Bemis PM-996
Penicillin-Streptomycin Gibco 15070-063
Pipettes Fisherbrand 13-711-6M
Scissors Artman instruments N/A 3pc Micro Scissors 5
Syringe BD 305482
Tissue paper Kimwipes N/A
Tube Corning 430052
Tweezers DR Instruments N/A Microdissection Forceps Set 

References

  1. Greene, N. D. E., Copp, A. J. Neural tube defects. Annual Review of Neuroscience. 37 (1), 221-242 (2014).
  2. Suzuki, M., Morita, H., Ueno, N. Molecular mechanisms of cell shape changes that contribute to vertebrate neural tube closure. Development, Growth & Differentiation. 54 (3), 266-276 (2012).
  3. Nikolopoulou, E., Galea, G. L., Rolo, A., Greene, N. D. E., Copp, A. J. Neural tube closure: Cellular, molecular and biomechanical mechanisms. Development. 144 (4), 552-566 (2017).
  4. Juriloff, D. M., Harris, M. J. Mouse models for neural tube closure defects. Human Molecular Genetics. 9 (6), 993-1000 (2000).
  5. Copp, A. J., Greene, N. D. E. Genetics and development of neural tube defects. The Journal of Pathology: A Journal of the Pathological Society of Great Britain and Ireland. 220 (2), 217-230 (2010).
  6. Wang, M., De Marco, P., Capra, V., Kibar, Z. Update on the role of the non-canonical wnt/planar cell polarity pathway in neural tube defects. Cells. 8 (10), 1198 (2019).
  7. Galea, G. L., et al. Biomechanical coupling facilitates spinal neural tube closure in mouse embryos. Proceedings of the National Academy of Sciences. 114 (26), E5177-E5186 (2017).
  8. Moon, L. D., Xiong, F. Mechanics of neural tube morphogenesis. Seminars in Cell & Developmental Biology. 130, 56-69 (2022).
  9. Christodoulou, N., Skourides, P. A. Distinct spatiotemporal contribution of morphogenetic events and mechanical tissue coupling during xenopus neural tube closure. Development. 149 (13), (2022).
  10. De Goederen, V., Vetter, R., Mcdole, K., Iber, D. Hinge point emergence in mammalian spinal neurulation. Proceedings of the National Academy of Sciences. 119 (20), 2117075119 (2022).
  11. Christodoulou, N., Skourides, P. A. Somitic mesoderm morphogenesis is necessary for neural tube closure during xenopus development. Frontiers in Cell and Developmental Biology. 10, 1091629 (2023).
  12. Nikolopoulou, E., et al. Spinal neural tube closure depends on regulation of surface ectoderm identity and biomechanics by grhl2. Nature Communications. 10 (1), 2487 (2019).
  13. Nychyk, O., et al. Vangl2-environment interaction causes severe neural tube defects, without abnormal neuroepithelial convergent extension. Disease Models & Mechanisms. 15 (1), 049194 (2022).
  14. Li, B., Brusman, L., Dahlka, J., Niswander, L. A. Tmem132a ensures mouse caudal neural tube closure and regulates integrin-based mesodermal migration. Development. 149 (17), (2022).
  15. Zulueta-Coarasa, T., Fernandez-Gonzalez, R. Laser ablation to investigate cell and tissue mechanics in vivo. Integrative Mechanobiology: Micro-and Nano Techniques in Cell Mechanobiology. , 128-147 (2015).
  16. Wiebe, C., Brodland, G. W. Tensile properties of embryonic epithelia measured using a novel instrument. Journal of Biomechanics. 38 (10), 2087-2094 (2005).
  17. Luu, O., David, R., Ninomiya, H., Winklbauer, R. Large-scale mechanical properties of xenopus embryonic epithelium. Proceedings of the National Academy of Sciences. 108 (10), 4000-4005 (2011).
  18. Maître, J. L., Niwayama, R., Turlier, H., Nédélec, F., Hiiragi, T. Pulsatile cell-autonomous contractility drives compaction in the mouse embryo. Nature Cell Biology. 17 (7), 849-855 (2015).
  19. Krieg, M., et al. Tensile forces govern germ-layer organization in zebrafish. Nature Cell Biology. 10 (4), 429-436 (2008).
  20. Zamir, E. A., Srinivasan, V., Perucchio, R., Taber, L. A. Mechanical asymmetry in the embryonic chick heart during looping. Annals of Biomedical Engineering. 31, 1327-1336 (2003).
  21. Bambardekar, K., Clément, R., Blanc, O., Chardès, C., Lenne, P. F. Direct laser manipulation reveals the mechanics of cell contacts in vivo. Proceedings of the National Academy of Sciences. 112 (5), 1416-1421 (2015).
  22. Savin, T., et al. On the growth and form of the gut. Nature. 476 (7358), 57-62 (2011).
  23. Almonacid, M., et al. Active diffusion positions the nucleus in mouse oocytes. Nature Cell Biology. 17 (4), 470-479 (2015).
  24. Campàs, O., et al. Quantifying cell-generated mechanical forces within living embryonic tissues. Nature Methods. 11 (2), 183-189 (2014).
  25. Campàs, O. A toolbox to explore the mechanics of living embryonic tissues. Seminars in Cell & Developmental Biology. 55, 119-130 (2016).
  26. Christian, Z. D., et al. High-resolution 3D biomechanical mapping of embryos with reverberant optical coherence elastography (Rev-OCE). Proceedings of SPIE. , 123670 (2023).
  27. Scarcelli, G., Yun, S. H. J. N. P. Confocal brillouin microscopy for three-dimensional mechanical imaging. Nature Photonics. 1 (1), 39-43 (2008).
  28. Scarcelli, G., et al. Noncontact three-dimensional mapping of intracellular hydromechanical properties by brillouin microscopy. Nature Methods. 12 (12), 1132-1134 (2015).
  29. Prevedel, R., Diz-Muñoz, A., Ruocco, G., Antonacci, G. Brillouin microscopy: An emerging tool for mechanobiology. Nature Methods. 16 (10), 969-977 (2019).
  30. Zhang, J., Scarcelli, G. Mapping mechanical properties of biological materials via an add-on brillouin module to confocal microscopes. Nature Protocols. 16 (2), 1251-1275 (2021).
  31. Boyd, R. W. . Nonlinear optics. , (2020).
  32. Scarcelli, G., Kim, P., Yun, S. H. In vivo measurement of age-related stiffening in the crystalline lens by brillouin optical microscopy. Biophysical Journal. 101 (6), 1539-1545 (2011).
  33. Scarcelli, G., Pineda, R., Yun, S. H. Brillouin optical microscopy for corneal biomechanics. Investigative Ophthalmology & Visual Science. 53 (1), 185-190 (2012).
  34. Antonacci, G., Braakman, S. Biomechanics of subcellular structures by non-invasive brillouin microscopy. Scientific Reports. 6 (1), 37217 (2016).
  35. Zhang, J., et al. Tissue biomechanics during cranial neural tube closure measured by brillouin microscopy and optical coherence tomography. Birth Defects Research. 111 (14), 991-998 (2019).
  36. Zhang, J., et al. Nuclear mechanics within intact cells is regulated by cytoskeletal network and internal nanostructures. Small. 16 (18), 1907688 (2020).
  37. Elsayad, K., Polakova, S., Gregan, J. Probing mechanical properties in biology using brillouin microscopy. Trends in Cell Biology. 29 (8), 608-611 (2019).
  38. Poon, C., Chou, J., Cortie, M., Kabakova, I. Brillouin imaging for studies of micromechanics in biology and biomedicine: From current state-of-the-art to future clinical translation. Journal of Physics: Photonics. 3 (1), 012002 (2020).
  39. Handler, C., Scarcelli, G., Zhang, J. Time-lapse mechanical imaging of neural tube closure in live embryo using brillouin microscopy. Scientific Reports. 13 (1), 263 (2023).
  40. Chapman, S. C., Collignon, J., Schoenwolf, G. C., Lumsden, A. Improved method for chick whole-embryo culture using a filter paper carrier. Developmental dynamics: an official publication of the American Association of Anatomists. 220 (3), 284-289 (2001).
  41. Schmitz, M., Nelemans, B. K. A., Smit, T. H. A submerged filter paper sandwich for long-term ex ovo time-lapse imaging of early chick embryos. Journal of Visualized Experiments. (118), e54636 (2016).
  42. Nys, Y., Guyot, N., Nys, Y., Bain, M., VanImmerseel, F. . Improving the safety and quality of eggs and egg products, vol 1: Egg chemistry, production and consumption. , 83-132 (2011).
  43. Berghaus, K. V., Yun, S. H., Scarcelli, G. High speed sub-ghz spectrometer for brillouin scattering analysis. Journal of Visualized Experiments. (106), e53468 (2015).
  44. Hamburger, V., Hamilton, H. L. A series of normal stages in the development of the chick embryo. Journal of Morphology. 88 (1), 49-92 (1951).
  45. Schlüßler, R., et al. Mechanical mapping of spinal cord growth and repair in living zebrafish larvae by brillouin imaging. Biophysical Journal. 115 (5), 911-923 (2018).
  46. Williams, R. M., Sauka-Spengler, T. Ex ovo electroporation of early chicken embryos. STAR Protocols. 2 (2), 100424 (2021).
  47. Chapman, S. C., Collignon, J., Schoenwolf, G. C., Lumsden, A. Improved method for chick whole-embryo culture using a filter paper carrier. Developmental Dynamics. 220 (3), 284-289 (2001).
  48. Edrei, E., Scarcelli, G. Adaptive optics in spectroscopy and densely labeled-fluorescence applications. Optics Express. 26 (26), 33865-33877 (2018).

Play Video

Cite This Article
Shi, C., Handler, C., Florn, H., Zhang, J. Monitoring the Mechanical Evolution of Tissue During Neural Tube Closure of Chick Embryo. J. Vis. Exp. (201), e66117, doi:10.3791/66117 (2023).

View Video