A mouse surgical model to create left lung ischemia reperfusion (IR) injury while maintaining ventilation and avoiding hypoxia.
Ischemia reperfusion (IR) injury frequently results from processes that involve a transient period of interrupted blood flow. In the lung, isolated IR permits the experimental study of this specific process with continued alveolar ventilation, thereby avoiding the compounding injurious processes of hypoxia and atelectasis. In the clinical context, lung ischemia reperfusion injury (also known as lung IRI or LIRI) is caused by numerous processes, including but not limited to pulmonary embolism, resuscitated hemorrhagic trauma, and lung transplantation. There are currently limited effective treatment options for LIRI. Here, we present a reversible surgical model of lung IR involving first orotracheal intubation followed by unilateral left lung ischemia and reperfusion with preserved alveolar ventilation or gas exchange. Mice undergo a left thoracotomy, through which the left pulmonary artery is exposed, visualized, isolated, and compressed using a reversible slipknot. The surgical incision is then closed during the ischemic period, and the animal is awakened and extubated. With the mouse spontaneously breathing, reperfusion is established by releasing the slipknot around the pulmonary artery. This clinically relevant survival model permits the evaluation of lung IR injury, the resolution phase, downstream effects on lung function, as well as two-hit models involving experimental pneumonia. While technically challenging, this model can be mastered over the course of a few weeks to months with an eventual survival or success rate of 80%-90%.
Ischemia reperfusion (IR) injury can occur when blood flow is restored to an organ or tissue bed after some period of interruption. In the lung, IR can occur in isolation or in association with other injurious processes such as infection, hypoxia, atelectasis, volutrauma (from high tidal volumes during mechanical ventilation), barotrauma (high peak or sustained pressures during mechanical ventilation), or blunt (non-penetrating) lung contusion injury1,2,3. There remain several gaps in our knowledge about the mechanisms of LIRI and the impact of concurrent processes (e.g., infection) on LIRI outcomes, and also the treatment options for LIRI are limited. An in vivo model of pure LIRI is required to identify the pathophysiology of lung IR injury in isolation and to study its contribution to any multi-hit process of which lung injury is a component.
Murine lung IR models can be used to study the lung-specific pathophysiology of multiple processes, including lung transplantation3, pulmonary embolism4, and lung injury following hemorrhagic trauma with resuscitation5. Currently used models include surgical lung transplantation6, hilar clamping7, ex vivo lung perfusion8, and ventilated lung IR9. Here, we provide a detailed protocol for a murine ventilated lung IR model of sterile lung injury. There are multiple benefits of this approach (Figure 2), including that it induces minimal hypoxia and minimal atelectasis, and it is a survival surgery model that allows for long-term studies.
Reasons to choose this model of LIRI over other models such as the hilar clamping and ex vivo perfusion models are the following: this model minimizes the inflammatory contributions of atelectasis, mechanical ventilation, and hypoxia; it preserves cyclical ventilation; it maintains an intact in vivo circulatory immune system that can respond to the IR injury; and finally, as a survival procedure, it permits the longer-term analysis of the mechanisms of secondary injury generation (2-hit models) and injury resolution. Overall, we believe this ventilated lung IR model provides the "purest" form of IR injury that can be studied experimentally.
Other publications have described the use of orotracheal intubation of mice to perform IT injections or installations10,11, but not as the starting point for a survival surgery as it is in this model. The placement of an orotracheal tube permits the performance of lung surgery by allowing the collapse of the operative lung. It also allows for the reinflation of the lung at the end of the procedure, which is critical for the pneumothorax and for the ability of the mouse to return to spontaneous ventilation at the conclusion of the procedures. Finally, the removal of the secured orotracheal tube is a simple procedure that, unlike an invasive tracheotomy, is compatible with a survival surgery. This allows for longer term research studies focused on understanding the progression and resolution of LIRI and associated disorders, as well as the creation of chronic injury models.
All procedures and steps described below were approved by the institutional animal care and use committee (IACUC) at the University of California San Francisco. Any mouse strain can be used, though some strains have a more robust lung IR inflammatory response compared to others12. Mice that are approximately 12-15 weeks of age (30-40 g) or older tolerate and survive the lung IR surgery better than younger mice. Both male and female mice can be used for these surgeries.
1. Mouse Intubation Protocol
2. Lung ischemia and reperfusion (IR) surgery protocol
Inflammation generated by unilateral ventilated sterile lung ischemia reperfusion (IR) injury: Following 1 h of ischemia, we observed increased levels of cytokines in the serum and within the lung tissue by both ELISA and qRT-PCR that peaked at 1 h following reperfusion and rapidly returned to baseline within 12-24 h after reperfusion13. For samples collected at 3 h following reperfusion, we observed intense neutrophil infiltration within the left lung tissue and noted that the intensity of the inflammation was dependent on the strain of mouse used (Figure 1). Notably, the inflammation that is generated in the absence of a co-existing or subsequent infectious process gradually resolves and the lungs return to their normal lung architecture (by histopathology) with efferocytosis or egress of neutrophils from the injured lungs within 12-24 h after reperfusion13. Of note, we observed mild but detectable inflammation, which was largely neutrophilic and was observed in the non-operative right lung as well, which we hypothesize is due to hyperperfusion injury14.
Tissue sample collection for this lung IR model is no different than that for other lung IR models: blood can be collected for plasma preparation via cardiac puncture or IVC cannulation; lung tissue can be harvested for protein or RNA preparation and then for further analysis by western blot, ELISA, or qPCR.
Figure 1: Histology of lung sections in wild type mice of two different strains. (A) C3H and (B) C57BL/6 mice. Both strains of mice received 1 h ischemia and 3 h reperfusion, and the tissue is shown at 10x magnification. The 40x magnification is shown in the inset. Neutrophilic infiltration was observed in both strains, with the C3H strain showing markedly greater levels of inflammation compared to C57BL/6 as reported earlier12. Scale bar is 200 µm. Please click here to view a larger version of this figure.
Figure 2: Comparison of advantages (blue text) and disadvantages (red text) of the three most commonly used mouse experimental lung IR injury (LIRI) models. This comparison highlights the choice of ventilated lung IR (described in this manuscript) as the ideal model for studying pure lung IR. Please click here to view a larger version of this figure.
This manuscript details the steps involved in performing the ventilated lung IR model developed by Dodd-o et al.9. This model has helped identify molecular pathways involved in the generation and resolution of inflammation from lung IR in isolation14,15,16,17, lung IR in combination with co-existing infection18, and lung IR in relation to the gut-lung axis and the contribution of the gut microbiome13,18,19. While technically more challenging, the current model allows for the evaluation of lung IR without the compounding effects of interrupted cyclic lung inflation and hypoxia. It also minimizes the period of mechanical ventilatory exposure, unlike the ex vivo perfusion model, which itself can lead to lung injury20.
Limitations of the method: While the mouse trachea is tapered enough that positive end expiratory pressure (PEEP) allows for expansion of the lungs and provides a snug fit for the ETT, lung mechanics and flow-volume loop measurements may not be possible with this version of reversible orotracheal intubation. These lung physiology measurements may require a tracheotomy, which, unlike this method, is incompatible with a survival lung surgery. Reversible orotracheal intubation is well tolerated by mice, and even in the absence of paralytics there is very little mouse-ventilator asynchrony provided the minute ventilation (MV = tidal volume x respiratory rate) is sufficiently high enough to prevent the natural CO2-driven drive by the breath taking over (i.e., just beyond the apneic threshold).
There are several considerations related to the ischemia-reperfusion (IR) portion of this procedure. First, the IR procedure should be performed with as little physical trauma to the lung as possible. We recommend pausing the mechanical ventilation and allowing the mouse to breathe spontaneously when entering the thoracic cavity. The negative pressure ventilation, along with the surgeon's grasping of the second or third rib and pulling it away from the lung while carefully entering the chest with a #11 scalpel blade, will reduce the chance of injuring the lung with the scalpel. Alternatively, we have found that using a #12 curved scalpel blade, positioned so that the curve faces upward, allows for more careful entry into the thoracic cavity, potentially reducing injury to the underlying left lung apex surface. Additionally, the connection between the left PA and the bronchus is less secure closer to the hilum, making passage of the ultrafine forceps between these two structures easier here.
The next critical step is isolating the left PA from the bronchus below to encircle the PA with a suture tie. It is essential that this step be accomplished carefully to avoid trauma to the lung apex. We recommend entering the thoracic cage as cephalad as possible to minimize the amount of the left lung that needs to be displaced or retracted to access the PA and bronchus. Any part of the lung that sustains blunt trauma must be excluded from evaluation for isolated IR injury. Often, the apex of the left lung is excised away when collecting the lungs for final analysis of sterile lung IR injury. Injury of the apex of the lung can be visualized during the surgery due to the presence of puncta of hemorrhage or bloody discoloration.
Between the PA and the bronchus below exists a connective tissue layer that must be breached to encircle the artery with the suture tie. Learning how much tension is permitted while grasping and pulling the left PA upward (i.e., toward the thoracic cage and away from the bronchus), using the non-serrated, non-damaging vessel grasping flat fine forceps in the left hand, is an important first step to master. The left PA can tolerate a surprising amount of tension and stretch as it is pulled upward. We find it helpful to increase magnification of the visual field to maximum and adjusting focus so that the potential space (a white line of connective tissue adhering the PA to the bronchus) can be clearly and sharply visualized along with the ultrafine forceps (held in the right hand). For the field to remain in focus, it is important to stabilize the left hand on the surgical surface while pulling the left PA up and away from the bronchus. The ultrafine forceps can then be passed in the space between the two structures. The closed tips should pass easily without any real resistance, and once seen on the other side of the left PA, the tips can be opened gently to further create space for the passage of the suture material. It is critical that this be performed using completely undamaged ultrafine forceps, which can be quickly determined by pulling a sterile alcohol swab through the closed tips to observe whether the tips tear at the material. Damage tips can also be identified by opening and closing the forceps under maximal magnification of the surgical microscope.
It is easy to detect damage that occurs to either the left PA or left main bronchus while attempting to separate them. Damage to the left PA results in flooding of the visual field with blood and can result in a non-salvageable surgery if the damage creates a hole within the PA itself. Notably, there are surface microscopic blood vessels on the PA that may get injured during the ultrafine forceps movement and can potentially be managed by placing a dry sterile cotton-tip swab over the field to absorb the blood that appears. If the bleeding stops, the procedure can be resumed. Damage to the left main bronchus is always a non-salvageable situation since there is no simple or rapid way of repairing airway damage.
The step of separating the PA from the underlying bronchus can be initially practiced on a dead mouse without the pressure of time or the distraction of cardiac activity and the movement it causes. Additionally, the stasis of blood in the left PA allows for it to be more easily visualized (thick and plump vessel), and yet still capable of being picked up by the non-injuring flat PA forceps. The ability to detect damage in the left bronchus is still possible, since the ventilation of the left lung can be used to assess for the presence of an intact conducting airway to the left lung. This practice situation can also be used to perfect the creation of the slipknot.
There is a finite duration of occlusion, beyond which spontaneous reperfusion after removal of the slipknot is not guaranteed. In pilot studies, this occurs somewhere between 6 and 10 h. Beyond this, reperfusion occurs less immediately after removal of the slipknot. As the ischemic period extends, reperfusion requires manipulation of the PA after slipknot removal in order to re-establish blood flow.
These following observations have been obtained from five co-authors of this paper that represent their collective experience in learning, perfecting, troubleshooting, and improving this procedure during the period when they conducted this mouse surgical model and have been summarized in the points below:
On average, it took 1-3 months to master this surgical procedure. One proceduralist estimated that it takes approximately 50 surgeries to become facile with the different procedures.
Success rate at the start of performing the procedure was 20%-40%. After performing the procedure regularly and with familiarity, success rate increased to 80%-90%.
The most difficult part of the surgery was unanimously the passing of the ultrafine forceps between the left PA and the left bronchus, and then the subsequent capture of the suture monofilament with the forceps and its passing between the two structures.
Mistakes during the passage of the monofilament between the PA and left mainstem bronchus can lead to an unsalvageable surgery with catastrophic bleeding of the left PA or irreversible injury to the left main bronchus.
The maximum number of surgeries feasible in 1 single day was estimated to be 10 (at approximately 35-45 min/surgery), while the ideal number for proceduralist comfort and surgical success was five or six.
Other miscellaneous tips and suggestions include:
Avoid excess caffeine before starting the surgical day to maintain steady hand position.
Increase magnification on the microscope to maximum during the portion of the procedure when the suture is being passed between the left PA and left main bronchus.
Use gentle and gradual/incremental movements when advancing the Dumont forceps to create space between the left PA and left main bronchus.
Stabilize hands on the surgical surface when performing all critical steps.
Ensure that the respiratory rate on the ventilator is high enough to avoid spontaneous breaths, especially during the key/critical portions of the procedure (suture passing between the left PA and left main bronchus).
A quiet and undisturbed environment to perform the surgeries is essential to stay focused and undistracted.
Figure 2 compares this model to alternative models of lung IR injury. This model of ventilated lung ischemia reperfusion offers the advantages of minimizing atelectasis, hypoxia, and mechanical ventilation. Importantly, as a survival surgery, it is compatible with second injury models (e.g., experimental pneumonia models) and analysis of the resolution of injury.
In conclusion, we have described a survival surgery involving the creation of lung ischemia reperfusion injury that we believe can provide valuable insight into the mechanisms and cellular pathways involved in pure IR injury in the lung.
The authors have nothing to disclose.
This work was funded by departmental support from the Department of Anesthesia and Perioperative Care, University of California San Francisco and San Francisco General Hospital, as well as by an NIH R01 award (to AP): 1R01HL146753.
Equipment | |||
Fiber Optic Light Pipe | Cole-Parmer | UX-41720-65 | Fiberoptic light pipe |
Fiber Optic Light Source | AmScope | SKU: CL-HL250-B | Light source for fiberoptic lights |
Germinator 500 | Cell Point Scientific, Inc. | No.5-1450 | Bead Sterilizer |
Heating Pad | AIMS | 14-370-223 | Alternative option |
Lithium.Ion Grooming Kits(hair clipper) | WAHL home products | SKU 09854-600B | To remove mouse hair on surgical site |
Microscope | Nikon | SMZ-10 | Other newer options available at the company website |
MiniVent Ventilator | Havard Apparatus | Model 845 | Mouse ventilator |
Ultrasonic Cleaner | Cole-Parmer | UX-08895-05 | Clean tools that been used in operation |
Warming Pad | Kent Scientific | RT-0501 | To keep mouse warm while recovering from surgery |
Weighing Scale | Cole-Parmer | UX-11003-41 | Weighing scale |
Surgery Tools | |||
4-0 Silk Suture | Ethicon | 683G | For closing muscle layer |
7-0 Prolene Suture | Ethicon Industry | EP8734H | Using for making a slip knot of left pulmonary artery |
Bard-Parker (11) Scalpel (Rib-Back Carbon Steel Surgical Blade, sterile, single use) | Aspen Surgical | 372611 | For entering thoracic cavity (option 1) |
Bard-Parker (12) Scalpel | Aspen Surgical | 372612 | For entering thoracic cavity (option 2) |
Extra Fine Graefe Forceps | FST | 11150-10 | Muscle/rib holding forceps |
Magnetic Fixator Retraction System | FST | 1. Base Plate (Nos. 18200-03) 2. Fixators (Nos. 18200-01) 3. Retractors (Nos. 18200-05 through 18200-12) 4. Elastomer (Nos.18200-07) 5. Retractor(No.18200-08) |
Small Animal Retraction System |
Monoject Standard Hypodermic Needle | COVIDIEN | 05-561-20 | For medication delivery IP |
Narrow Pattern Forceps | FST | 11002-12 | Skin level forceps |
Needle holder/Needle driver | FST | 12565-14 | for holding needles |
Needles | BD | 305110 | 26 gauge needle for externalizing slipknot (24 or 26 gauge needle okay too) |
PA/Vessel Dilating forceps | FST | 00125-11 | To hold PA; non-damaging gripper |
Scissors | FST | 14060-09 | Used for incision and cutting into the muscular layer durging surgery |
Ultra Fine Dumont micro forceps | FST | 11295-10 (Dumont #5 forceps, Biology tip, tip dimension:0.05*0.02mm,11cm) | For passing through the space between the left pulmonary artery and bronchus |
Reagents | |||
0.25% Bupivacaine | Hospira, Inc. | 0409-1159-02 | Topical analgesic used during surgical wound closure |
Avertin (2,2,2-Tribromoethanol) | Sigma-Aldrich | T48402-25G | Anesthetic, using for anesthetize the mouse for IR surgery, the concentration used in IR surgery is 250-400 mg/kg. |
Buprenorphine | Covetrus North America | 59122 | Analgesic: concentration used for surgery is 0.05-0.1 mg/kg |
Eye Lubricant | BAUSCH+LOMB | Soothe Lubricant Eye Ointment | Relieves dryness of the eye |
Povidone-Iodine 10% Solution | MEDLINE INDUSTRIES INC | SKU MDS093944H (2 FL OZ, topical antiseptic) | Topical liquid applied for an effective first aid antiseptic at beginning of surgery |
Materials | |||
Alcohol Swab | BD brand | BD 326895 | for sterilzing area of injection and surgery |
Plastic film | KIRKLAND | Stretch-Tite premium | Alternative for covering the sterilized surgical field (more cost effective) |
Rodent Surgical Drapes | Stoelting | 50981 | Sterile field or drape for surgical field |
Sterile Cotton Tipped Application | Pwi-Wnaps | 703033 | used for applying eye lubricant |
Top Sponges | Dukal Corporaton | Reorder # 5360 | Stopping bleeding from skin/muscle |