This protocol uses three-dimensional (3D) printers and laser cutters found in makerspaces in order to create a more flexible flight mill design. By using this technology, researchers can reduce costs, enhance design flexibility, and generate reproducible work when constructing their flight mills for tethered insect flight studies.
Makerspaces have a high potential of enabling researchers to develop new techniques and to work with novel species in ecological research. This protocol demonstrates how to take advantage of the technology found in makerspaces in order to build a more versatile flight mill for a relatively low cost. Given that this study extracted its prototype from flight mills built in the last decade, this protocol focuses more on outlining divergences made from the simple, modern flight mill. Previous studies have already shown how advantageous flight mills are to measuring flight parameters such as speed, distance, or periodicity. Such mills have allowed researchers to associate these parameters with morphological, physiological, or genetic factors. In addition to these advantages, this study discusses the benefits of using the technology in makerspaces, like 3D printers and laser cutters, in order to build a more flexible, sturdy, and collapsible flight mill design. Most notably, the 3D printed components of this design allow the user to test insects of various sizes by making the heights of the mill arm and infrared (IR) sensors adjustable. The 3D prints also enable the user to easily disassemble the machine for quick storage or transportation to the field. Moreover, this study makes greater use of magnets and magnetic paint to tether insects with minimal stress. Lastly, this protocol details a versatile analysis of flight data through computer scripts that efficiently separate and analyze differentiable flight trials within a single recording. Although more labor-intensive, applying the tools available in makerspaces and on online 3D modeling programs facilitates multidisciplinary and process-orientated practices and helps researchers avoid costly, premade products with narrowly adjustable dimensions. By taking advantage of the flexibility and reproducibility of technology in makerspaces, this protocol promotes creative flight mill design and inspires open science.
Given how intractable the dispersal of insects is in the field, the flight mill has become a common laboratory tool to address an important ecological phenomenon – how insects move. As a consequence, since the pioneers of the flight mill1,2,3,4 ushered in six decades of flight mill design and construction, there have been noticeable design shifts as technologies improved and became more integrated into scientific communities. Over time, automated data-collecting software replaced chart recorders, and flight mill arms transitioned from glass rods to carbon rods and steel tubing5. In the last decade alone, magnetic bearings replaced Teflon or glass bearings as optimally frictionless, and pairs between flight mill machinery and versatile technology have been proliferating as audio, visual, and layer fabrication technology become increasingly integrated into researchers' workflows. These pairings have included high-speed video cameras to measure wing aerodynamics6, digital-to-analog boards to mimic sensory cues for studying auditory flight responses7, and 3D printing to make a calibration rig to track wing deformation during flight8. With the recent rise of emerging technologies at makerspaces, particularly at institutions with digital media centers run by knowledgeable staff9, there are greater possibilities to enhance the flight mill to test a larger range of insects and to transport the device to the field. There is also a high potential for researchers to cross disciplinary boundaries and accelerate technical learning through production-based work9,10,11,12. The flight mill presented here (adapted from Attisano and colleagues13) takes advantage of emerging technologies found in makerspaces to not only 1) create flight mill components whose scales and dimensions are fine-tuned to the project at hand but also 2) offer researchers an accessible protocol in laser cutting and 3D printing without demanding a high-budget or any specialized knowledge in computer-aided design (CAD).
The benefits of coupling new technologies and methods with the flight mill are substantial, but flight mills are also valuable stand-alone machines. Flight mills measure insect flight performance and are used to determine how flight speed, distance, or periodicity relates to environmental or ecological factors, such as temperature, relative humidity, season, host plant, body mass, morphological traits, age, and reproductive activity. Distinct from alternative methods like actographs, treadmills, and the video recording of flight movement in wind tunnels and indoor arenas14, the flight mill is notable for its ability to collect various flight performance statistics under laboratory conditions. This helps ecologists address important questions on flight dispersal, and it helps them progress in their discipline – whether that be integrated pest management15,16,17, population dynamics, genetics, biogeography, life-history strategies18, or phenotypic plasticity19,20,21,22. On the other hand, devices like high-speed cameras and actographs can require a strict, complicated, and expensive setup, but they can also lead to more fine-tuned movement parameters, such as wing-beat frequencies and insect photophase activity23,24. Thus, the flight mill presented here serves as a flexible, affordable, and customizable option for researchers to investigate flight behavior.
Likewise, the incentive to integrate emerging technologies into ecologists' workflow continues to rise as questions and approaches to studying dispersal become more creative and complex. As locations that promote innovation, makerspaces draw in multiple levels of expertise and offer a low learning curve for users of any age to acquire new technical skills10,12. The iterative and collaborative nature of prototyping scientific devices in the makerspace and through online open sources can accelerate the application of theory11 and facilitate product development in the ecological sciences. Furthermore, increasing the reproducibility of scientific tools will encourage wider data collection and open science. This can help researchers standardize equipment or methods for measuring dispersal. Standardizing tools could further allow ecologists to unify dispersal data across populations in order to test metapopulation models that develop from dispersal kernels25 or source-sink colonization dynamics26. Much like how the medical community is adopting 3D printing for patient care and anatomy education27, ecologists can use laser cutters and 3D printers to redesign ecological tools and education and, within the scope of this study, can design additional flight mill components, such as landing platforms or a flight mill arm that can move vertically. In turn, the customization, cost-effectiveness, and increased productivity offered by makerspace technology can help start up dispersal projects with a relatively low barrier for researchers who intend to develop their own tools and devices.
To construct this flight mill, there are also mechanical and instrumental limitations that can be considered by the maker. Magnets and 3D printed enhancements allow the flight mill to be essentially glueless, except for the construction of the cross brackets, and to be accommodable to insects of different sizes. However, as the mass and the strength of insects increase, insects may be more likely to dismount themselves while tethered. Strong magnets can be used at the cost of increased torsional drag, or ball bearings can replace magnetic bearings as a robust solution for flight testing insects that weigh several grams28,29. Nevertheless, ball bearings can also present some problems, mainly that running prolonged experiments with high speeds and high temperatures can degrade the lubrication of ball bearings, which increases friction30. Thus, users will have to discern which flight mill mechanics would best suit their insect(s) of study and experimental design.
Similarly, there are several ways to instrument a flight mill that is beyond this paper's considerations. The flight mill presented here uses IR sensors to detect revolutions, WinDAQ software to record revolutions, and programming scripts to process the raw data. Although it is easy-to-use, the WinDAQ software has a limited array of tools available. Users cannot attach comments to their corresponding channel, and they cannot be alerted if any component of the circuitry fails. These cases are solved by detecting and correcting them through code but only after data collection. Alternatively, users can adopt more than one software that offers customizable data collection features28 or sensors that take direct speed and distance statistics, like bike milometers29. However, these alternatives can bypass valuable raw data or diffuse functionality across too many software applications, which can make data processing inefficient. Ultimately, rather than refashioning flight mill instrumentation, this protocol offers robust programming solutions to present-day software limitations.
In this paper, a design for an enhanced simple flight mill is described to aid researchers in their dispersal studies and to encourage the incorporation of emerging technologies in the field of behavioral ecology. This flight mill fits within the constraints of an incubator, holds up to eight insects simultaneously, and automates data collection and processing. Notably, its 3D printed enhancements allow the user to adjust the mill arm and IR sensor heights to test insects of various sizes and to disassemble the device for quick storage or transportation. Thanks to institutional access to a communal makerspace, all enhancements were free, and no additional costs were accrued compared to the simple, modern flight mill. All software needed are free, the electronic circuitry is simple, and all scripts can be modified to follow the specific needs of the experimental design. Moreover, coded diagnostics allow the user to check the integrity and precision of their recordings. Lastly, this protocol minimizes the stress sustained by an insect by magnetically painting and tethering insects to the mill arm. With the assembly of the simple flight mill being already accessible, affordable, and flexible, the use of makerspace technologies to enhance the simple flight mill can grant researchers the space to overcome their own specific flight study needs and can inspire creative flight mill designs beyond this paper's considerations.
1. Build the Flight Mill in a Makerspace
2. Conduct Flight Trials
3. Analyze Flight Data
Flight data were obtained experimentally during Winter 2020 using field collected J. haematoloma from Florida as the model insects (Bernat, A. V. and Cenzer, M. L. , 2020, unpublished data). Representative flight trials were conducted in the Department of Ecology and Evolution at the University of Chicago, as shown below in Figure 6, Figure 7, Figure 8, and Figure 9. The flight mill was set up within an incubator set to 28 °C/27 °C (day/night), 70% relative humidity, and a 14 h light/10 h dark cycle. For each trial, the flight track of multiple bugs was recorded every hundredth of a second by the WinDAQ software for up to 24 h. After preliminary trials, flight behavior was categorized into bursting flight and continuous flight. Bursters flew sporadically for less than 10 min at a time, and continuous flyers flew uninterrupted for 10 min or longer. Any individual that did not exhibit continuous flight behavior within its 30 min testing phase was pulled off the flight mill and replaced with a new bug and its accompanying ID in an event marker comment. All bugs that exhibited continuous flight remained on the flight mill beyond 30 min until they stopped flying. Bugs were swapped from 8 AM to 4 PM each day. As represented in Figure 9, flight trials of individuals in a day's recording varied in length from 30 min to 11+ h. By inserting event markers at the addition of new individuals, this complex data structure becomes successfully processed through the Python scripts, and the code effectively helps users visualize the scope of their experiments. The proposed experimental setup captures the full flight capacity of insects; however, it omits the possibly of observing flight periodicity. Users then have the option to tailor their flight trials for different flight metrics and choose which flight behavior or strategies they most wish to test.
The on-screen waveform and diagnostic heatmap(s) also make it possible to identify gaps or resolve inconsistencies in the flight track data. Figure 6A shows a set of trials whose flight data were successfully recorded for all channels without noise or disruption. It also shows all the event marker comments made during recording. Figure 6B shows a moment where the recorded signal was lost in channel 3, dropping the voltage immediately to 0 V. This was possibly due to the crossing over of open wires or the loosening of wires. There are also particular events during recording that could occur but are corrected for in the Python scripts. This includes double troughs, mirror troughs, and voltage noise (Figure 6C,D). These events lead to false trough readings, but they can reliably be identified and removed during analyses. Figure 7 compares three data files to show how noise or sensitive troughs in the recording data were diagnosed during the standardization process. The first (Figure 7A) is a file whose troughs generated by each revolution of the flight mill arm were robust, meaning they largely deviated from the file's mean voltage. In turn, as the standardization interval around the mean increased, there was no change in the number of troughs identified. This suggested that there was no voltage noise, and the user can then be confident in the accuracy of the standardization. On the other hand, the third file (Figure 7C) had troughs that were either too sensitive or had extraneous voltage noise that did not deviate largely from the file's mean voltage. As a result, its number of troughs decreased substantially as the standardization interval around the mean increased. It would then be advisable to look back into the original WDH recording file to confirm whether the insect was truly flying.
By plotting the flight speed and duration statistics of the individual, flight behavior can be further characterized into four flight categories: bursts (B), bursts to continuous (BC), continuous to bursts (CB), and continuous (C), as represented in Figure 8. An individual that strictly exhibited continuous flight flew uninterrupted for 10 min or more at least by the end of its 30 min testing phase (Figure 8A). An individual that flew sporadically throughout its 30 min testing phase exhibited bursting flight (Figure 8B). An individual that initially exhibited continuous flight for more than 10 min and then tapered within its 30 min testing phase into sporadic bursts exhibited continuous to bursting flight (Figure 8C). Finally, an individual that initially demonstrated bursting flight and then transitioned into continuous flight for the remainder of the 30 min testing phase and beyond exhibited bursting to continuous flight (Figure 8D). Thus, specific to the model insect and experimental framework, the user can use this graphic output to assess and identify general flight behavior patterns despite unique variations in individual tracks.
Figure 1: Designs to be laser cut for acrylic plastic sheet structure. Eight acrylic plastic sheets were laser cut in order to construct the plastic support structure of the flight mill. File lines were created in Adobe Illustrator in RGB mode, where RGB Red (255, 0, 0) cut lines and RGB Blue (0, 0, 255) etched lines. For greater legibility in this figure, file line strokes were increased from 0.0001 point to 1 point. Coordinate units are mm, and the dot in the top left corner of each design is the origin, where moving further down and to the right of the origin leads to positive ascending values. There are three different sheet designs: the outside vertical walls, a central vertical wall, and horizontal shelves. The two outside vertical walls slide into the horizontal shelves at their slits, and their rectangular holes are used to mount the 3-D printed linear guide rail, blocks, and supports. There is one central vertical wall with slits that divides the flight mill into eight cells and provides additional structural support. There are also five horizonal shelves with slits, etched circles to mark the location of the magnetic tube supports, and small rectangular holes to allow the tube supports to be screwed in. Please click here to view a larger version of this figure.
Figure 2: Assembled flight mill. A) Flight mill assembly. Each horizonal shelf (HS) has been inserted into the open slits of the outside vertical walls (OW) and central vertical wall (CW). Moreover, each cell, or 'chamber', is identified with a channel letter (A or B) that corresponds to a data logger and a channel number (1-4) that corresponds to the channel on the specific data logger. B) Flight mill cell assembly with flight mill arm. Magnetic bearings can be raised or lowered by sliding the inner tubes within the outer tubes to adjust the height of the arm. The IR sensors can be also be raised or lowered to align the sensors with the height of the flag on the arm. IR sensors can also be removed from their linear guide rail blocks easily if they need to be replaced or inspected or if the flight mill needs to be transported. Cross brackets provide structural support for each acrylic cell and can be easily inserted and removed. C) Linear guide rail and block assembly in the cell window. All 3D components and respective screws in the cell window are labeled for clearer assembling. Please click here to view a larger version of this figure.
Figure 3: 3D printed designs. Measurements are in mm. A) Linear guide rail. B) Linear guide rail block shaped to hold an IR sensor. C) Screw used as support to replace iron screws. D) Tube support. E) Magnet support. F) Cross bracket used as an acrylic frame aligner and stabilizer. G) Long support and H) short support to keep the linear guide rails in place. Only linear guide rail supports that rest on the outside face of the acrylic wall are shown. Linear guide rail support mirrors are not shown. Please click here to view a larger version of this figure.
Figure 4: Flight mill electrical circuitry. A) Simple diagram of an electric circuit connecting the IR sensors to the data logger. When the flag on the mill arm interrupts the beam emitted by the IR sensor transmitter, the current stops flowing to the IR sensor receiver and the voltage drops to zero. The data logger records all drops in voltage. B) Electrical circuits highlighted. Each yellow box delimits the components of a circuit connected to the breadboard. Multiple electric circuits can be connected to a single breadboard in alternating rows. The size of the solderless breadboard limits how many flight cells can be accommodated. Please click here to view a larger version of this figure.
Figure 5: Insects of different sizes magnetically painted and tethered. A) Drosophila melanogaster (common fruit flies) magnetically painted and tethered. Fruit flies are small insects (body length 5 mm; mass = 0.2 mg) that need to first be anesthetized with ice or CO2 under a microscope before applying the magnetic paint to their thorax. B) Mismatch between insect size and magnet size. The magnet on the flight mill arm should best accommodate the size of the insect. Here the insect's field of vision is obstructed because the magnet is too large. A smaller conical magnet or magnetic strip would solve this mismatch. C-F) Oncopeltus fasciatus (milkweed bugs) and Jadera haematoloma (soapberry bugs) magnetically painted and tethered. Larger bugs (body length > 5 mm; mass > 0.1 g) can be pinched by their legs before applying a coat of paint on their thorax. Please click here to view a larger version of this figure.
Figure 6: Examples of WDH flight recordings. Voltage troughs represent complete revolutions of the flight mill's arm. The red dotted lines divide the display, and the seconds-per-division (sec/div) of each panel are highlighted in blue. Black vertical lines mark the cursor time. A) Event markers. The sec/div was changed from 0.2 sec/div to its max, allowing the entire waveform to be drawn across the screen. All event markers taken across all channels will only be visible in the first channel as lines that run from the max voltage to the bottom of the channel field window. All event makers for this recording set are within the yellow oval. B) Signal loss. In another recording set, the sec/div was changed from 0.2 sec/div to 15 sec/div to help visualize a recorded signal lost from 17:09 to 17:15 in channel 3. All other channels such as channel 4 continued to function properly. C) Double troughs and mirror troughs. Double troughs are when the voltage dips, rises, and then quickly dips and rises again to create what appears to be two merged troughs in one beam-breaking event. The double troughs also mirror one another, which suggests that the flag moved back and forth between the sensor, which usually happens when an insect stops flying. The Python scripts correct for each case. D) Voltage noise. Soon after 13:14, small bumps in the voltage can be seen, which suggest voltage noise in the recording. Please click here to view a larger version of this figure.
Figure 7: Representative trough diagnostic data from Jadera haematoloma (soapberry bug). Potential noise or overly sensitive troughs are readily recognized in the flight recordings. A) An optimal, robust recording from example individual 318. There was no change in the number of troughs as the minimum and maximum deviation values increased, and so the troughs were robust enough to be identified despite a large standardization interval. B) A sub-optimal, but still robust recording from example individual 371. There is a drop in the number of troughs as the minimum and maximum deviation values increased; however, the drop was minimal (11 troughs). There could be noise and some sensitive troughs but nothing substantial. C) A noisy recording from example individual 176. There is a clear and rapid drop in the number of troughs identified as the minimum and maximum deviation values increased until its number plateaus at 12 troughs. This signals a lot of potential noise or overly sensitive troughs while the 12 troughs remain as robust troughs. Please click here to view a larger version of this figure.
Figure 8: Representative flight data from Jadera haematoloma (soapberry bug). Four categories of flight behavior can be identified in the flight recordings. A) Continuous flight. This individual flew continuously for 1.67 h, beginning at high speeds and then tapering over time into lower speeds. B) Bursting flight. This individual flew only in bursts within the first 30 min of their trial. Bursters can reach high speed but this individual could only retain low speeds. C) Continuous to bursting flight. This individual had maintained continuous flight for 25 min and then tapered off into bursts for the remaining 5 min of their trial. D) Bursting to continuous flight. This individual begun as a burster, reaching high sporadic speeds, and then transitioned into continuous flight for about 4 h. Please click here to view a larger version of this figure.
Figure 9: Representative channel visualization of multiple flight trials within a single recording set. Each color represents an individual soapberry bug at its given channel letter and channel number during its trial. All start times, stop times, and filenames were extracted from each individual's unique flight track .txt file. Please click here to view a larger version of this figure.
Supplemental Figure 1: Kerf key. Kerf is the thickness of the material removed or lost in the process of cutting that material. For a laser cutter, two important factors will determine the width of the kerf: the beam width and the material type. To test and calculate the exact kerf, laser cut the key and fit the 20 mm width key into the slot that it fits most securely. Then, subtract the slot width value from the key width value. For example, a key with a width of 20 mm that fits into a 19.5 mm slot will have a kerf thickness of 0.5 mm. Please click here to download this File.
Supplemental Figure 2: Comparison of low sampling frequencies. A) Relationship between voltage drop and speed by sampling frequency. Each line color and point shape represents a sampling frequency (100 Hz, 75 Hz, 50 Hz, and 25 Hz). Voltage drop is synonymous with the size of the trough. Lines fit second order regressions, which describe the decrease in trough size as speed increases and the following rise in trough size at higher speeds. The shaded bar runs from 0 V to 0.1 V, which marks the voltage range in which noise occurs. Data were collected on cell B-4 using the WinDAQ recording software and with foil flag dimensions 30 mm length by 30 mm width. The flight mill arm was spun rapidly by hand and left to spin until it stopped moving. Sampling frequencies 25 Hz or lower are in danger of misidentifying troughs as noise during standardization and diagnostic tests. Sampling frequencies of 100 Hz or higher are especially robust at recording large troughs for speeds less than 1 m/s. B) Trough sizes of different sampling frequencies seen through the waveform. As the sampling frequencies decrease, their representation on the waveform also shrinks. Please click here to download this File.
Supplemental Figure 3: Flowchart of the functions and data structures of each Python script. An overview of the inputs, functional processes, and outputs of each Python script for the proposed flight mill is summarized and described through examples. Please click here to download this File.
Supplemental 3D Print. Please click here to download this File.
Supplemental Coding Files. Please click here to download this File.
The simple, modern flight mill provides a range of advantages for researchers interested in studying tethered insect flight by delivering a reliable and automated design that tests multiple insects efficiently and cost-effectively13,31,35. Likewise, there is a strong incentive for researchers to adopt fast-emerging technologies and techniques from industry and other scientific fields as a means to build experimental tools to study ecological systems9,32,33. This protocol takes advantage of two rapidly emerging technologies, the 3D printer and the laser cutter, which are becoming increasingly available in communal makerspaces, in order to enhance the simple, modern flight mill. These enhancements provide a more flexible, adjustable, and collapsible design that accommodates insects of different sizes, minimizes stress placed on the insect, and allows the flight mill to be transported easily to multiple locations or environments. Furthermore, the additional expenses of using the technologies are minimal or even free. However, these technologies can also be a challenge to experiment with if reaching proficiency in using vector graphics editors and 3D image software is not readily available. In turn, the flight mill presented here serves to both encourage researchers to incorporate available emerging technologies in their workflow and to allow researchers to build a customizable, flexible, and effective flight mill without specialized knowledge of electronics, programming, or CAD models.
The strongest aspects of this protocol are the makerspace's technologies that expand a user's flight mill design options, the use of magnetic paint to minimize insect stress, and the automation of flight recordings that processes multiple insects within a single recording. The laser cutter offers precise and exact cutting capabilities that can handle jobs of almost any complexity. The user can modify the acrylic support structure to mount additional 3D prints or purchased items. The 3D printer allows the user to create customizable flight mill components that can bypass costly, pre-made products with narrowly adjustable dimensions. 3D prints not proposed in this paper can also be built, such as landing platforms, supports that can quickly exchange between magnetic bearings and ball bearings, or even a new attachment that tethers an insect. Finally, the use of automated recording software and Python scripts to differentiate multiple flight trials within a single recording makes it possible to study sporadic bouts of flight to very long bouts of flight. However, given how variable flight activity and duration is across species, it is suggested that the user conducts preliminary trials in order to understand the limits and general patterns of a species' flight behavior so as to optimize data collection. The user can also assess the integrity of their recordings using the diagnostic heatmap(s) and can account for any necessary speed corrections in the scripts.
Researchers should also be aware of the flight mill's general constraints. Previous studies have made known and have attempted to remediate the limitations of tethered flight, including a lack of tarsal contact to allow the insect to rest at will18,31, the absence of energy expended when an insect takes-off34, the additional drag the insect overcomes when pushing the flight mill arm, and the insect needing to compensate for the outward aerodynamic forces experienced due to the centrifugal acceleration of its circular flight track6,35. Additionally, there continue to be inconsistencies on how to categorize or more precisely quantify the short or 'trivial' bursts insects display, especially when comparing the flight behavior and mechanisms of large migratory insects to those of small insects who exhibit mostly hovering flight24,36,37. Despite these limitations, there has been significant progress in capturing and categorizing flight behavior within insect species, and researchers have continued to couple the flight mill with other technologies and methods6,7,8.
The makerspace as a location of creativity, collaboration, and low barriers will further inspire researchers to troubleshoot 3D print design limitations or laser cut more intricate designs. Studies have surveyed the effectiveness of makerspaces not just as iterative product-making spaces but also as places of accelerated learning10,11,12. Engineering students overall scored higher in design comprehension, design documentation, and model quality when their designs were made using makerspace technology11. Additionally, their model development time dropped by 50%, indicating that makerspace exploration outperformed traditional rote theory and application coursework11. In turn, researchers with little design knowledge will be able to deepen it, and researchers who are also educators can take advantage of this space as a means to increase design organization, craftmanship, and technical dexterity for students. In a discipline like ecology that already makes use of a variety of tools for field and laboratory work, researchers can also develop, share, and standardize novel or enhanced tools. The flight mill proposed in this paper is only the start of what could be an approach to democratizing and rapidly spreading new means of collecting data.
Flight mills have played an important role in enabling researchers to understand the dispersal of insects – an ecological phenomenon still essentially intractable in the field. Future advances in the design and application of the flight mill can be achieved as researchers become more proficient in emerging technologies and the software accompanying those technologies. This could include designing flight mill arm bearings that allow vertical lift or give the insect greater flight orientation flexibility. Additionally, the precision of laser cutters and 3D printers may be necessary for researchers interested in scaling down and calibrating for small insects with mostly hovering capabilities. In turn, the goal of this protocol was to provide an easy entry to these technologies while constructing one of the most common and useful devices in the field of behavioral ecology – the flight mill. If researchers have access to a communal makerspace and are committed to navigating its technologies, the resulting enhancements and improvements of the modern flight mill will lead to creative and collaborative flight mill design and will continue to offer insights into the underlying traits and mechanisms that influence insect species' variations and patterns in movement.
The authors have nothing to disclose.
I would like to thank Meredith Cenzer for purchasing all flight mill materials and providing continuous feedback from the construction to the write-up of the project. I also thank Ana Silberg for her contributions to standardize_troughs.py. Finally, I thank the Media Arts, Data, and Design Center (MADD) at the University of Chicago for permission to use its communal makerspace equipment, technology, and supplies free of charge.
180 Ω Resistor | E-Projects | 10EP514180R | Carbon film; stiff 24 gauge lead. |
19 Gauge Non-Magnetic Hypodermic Steel Tubing | MicroGroup | 304H19RW | |
2.2 kΩ Resistor | Adafruit | 2782 | Carbon film; stiff 24 gauge lead. |
3D Printer | FlashForge | 700355100638 | |
3D Printer Filament | FlashForge | 700355100638 | Diameter 1.75 mm; 1kg/roll. |
3D Printing Slicing Software | FlashPrint | 4.4.0 | |
Acrylic Plastic Sheets | Blick Art Supplies | 28945-1006 | |
Aluminum Foil | Target | 253-01-0860 | |
Breadboard Power Supply | HandsOn Tech | MDU1025 | Can take 6.5V to 12V input and can produce 3.3V and 5V. |
DI-1100 USB Data Logger | DATAQ Instruments | DI-1100 | Has 4 differential armored analog inputs. |
Electrical Wires | Striveday | B077HWS5XV | 24 gauge solid wire. |
Entomological Pins | BioQuip | 1208S2 | Size 2; diameter 0.45 mm. |
Filtered 20 uL Pipette Tip | Fisher Scientific | 21-402-550 | |
Hot Glue Gun with Hot Glue | Joann Fabrics | 17366956 | |
IR Sensor | Adafruit | 2167 | This is the 3 mm IR version; works up to 25 cm. |
Large Clear Vinyl Tubing | Home Depot | T10007008 | Inner diameter 3/8 in; outer diameter 1/2 in; length 20 ft. |
Large Magnets | Bunting | EP654 | Low-friction N42 neodymium; diameter 0.394 in; length 0.157 in; holding force 4.9 lb. |
Laser Cutter | Universal Laser Systems | PLS6.75 | |
M5 Hex Nut | Home Depot | 204274112 | Thread pitch 0.8 mm; screw length 20 mm; diameter 5 mm. |
M5 Long Iron Screws | Home Depot | 204283784 | Philips pan head; thread pitch 0.8 mm; screw length 20 mm; diameter 5 mm. |
M5 Short Iron Screws | Home Depot | 203540129 | Philips pan head; thread pitch 0.8 mm; screw length 10 mm; diameter 5 mm. |
Neoprene Rubber Sheet | Grainger | 60DC16 | Length 12 in; width 12 in; depth 1/8in. |
Online 3D Modeling Software | Autodesk | 2019_10_14 | Tinkercad.com offers a free account. |
Power Adaptor | Adafruit | 63 | 9 VDC 1000mA regulated switching; input voltage DC 3.3V 5V. |
Small Clear Vinyl Tubing | Home Depot | T10007005 | Inner diameter 1/4 in; outer diameter 3/8 in; 20 ft long. |
Small Magnets | Bunting | N42P120060 | Low-friction N42 neodymium; diameter 0.120 in; length 0.060 in; holding force 0.5 lb. |
Solderless MB-102 Breadboard | Adafruit | 239 | 830 tie points; length 17 cm; width 5.5 cm; input voltage, DC 3.3 V 5 V. |
Sophisticated Finishes Iron Metallic Surfacer | Blick Art Supplies | 27105-2584 | |
Wire Cutters | Target | 84-031W |