This protocol attempts to establish a repeatable protocol for primary neurons and glia isolation from rat bladder for further cellular experiments.
The lower urinary tract has two main functions, namely, periodic urine storage and micturition; these functions are mediated through central and peripheral neuroregulation. Although extensive research on the lower urinary tract nervous system has been conducted, most studies have focused on primary culture. This protocol introduces a method for the isolation and culture of bladder neurons and glia from Sprague–Dawley rats. In this method, the neurons and glia were incubated in a 37 °C, 5% CO2 incubator for 5–7 days. As a result, they grew into mature shapes suitable for related subsequent immunofluorescence experiments. Cells were morphologically observed using an optical microscope. Neurons, synaptic vesicles, and glia were identified by β-III-tubulin and MAP-2, Synapsin-1, and GFAP staining, respectively. Meanwhile, immunocytochemistry was performed on several neurotransmitter-related proteins, such as choline acetyltransferase, DYNLL2, and SLC17A9.
The lower urinary tract has two main functions: periodic urine storage and micturition1. The lower urinary tract nervous system (LUTNS) controls these functions and is delicate and susceptible to many neuropathies, which can be innate (porphyria), acquired (Lyme disease), secondary to disease states (diabetic cystopathy), drug induced (hemorrhagic cystitis), surgery caused (abdominoperineal resection), or injury caused (traumatic spinal cord injury)2,3,4,5,6,7. In physiological/pathological studies, in vivo and in vitro experiments are equally important. While in vivo research on LUTNS has been conducted at organ, cellular, and molecular levels for some time, in vitro research on primary neurons from the urinary bladder is almost nonexistent8,9. Although the present study is limited, we hope to pioneer research in this area so that other researchers could improve it. In this manner, this co-culture may lead to a cellular understanding of physiological dysfunction in phenotypes, such as bladder neuron dysfunction.
In contrast to enteric muscles with a clear directionality of the muscle cells into discrete layers, the muscles of the bladder are unorganized10. Therefore, instead of peeling off the outer layer of the bladder, this method proposes digesting the entire bladder to reduce the difficulty of operation and shorten the preprocessing time for a high cell survival rate.
Following this method, we can obtain a mixed culture of neurons and other cells. The other cells are indispensable because their presence mimics an in vivo environment11. In addition, such cells provide the substances that are unavailable in the medium.
This method involves two steps for digestion. First, collagenase type II is used to hydrolyze collagen, followed by trypsin, to dissociate the tissue into cells10. In this manner, bladder tissues are dispersed into single cells and then grow relatively independent. When the culture of neurons matures, the neurons can be used for imaging or functional assays.
All experimental protocols and animal procedures complied with the ethical principle guidelines of the National Research Council.
1. Preparation of materials
2. Bladder harvest
3. Two-step bladder digestion
In the process of primary cell culture, the cells acquired were round with bright and clear boundaries before the attached state. As the neurons grew, dendrites and axons started to be distinct. After 5–7 days of culture, the neurons reached a mature form with long projections, which were ideal for imaging or function studies. Although most of the impurities and cell debris could be removed due to changing media, certain residuals attached to poly-D-lysine and laminin coating were visible (Figure 1).
After proper culture, neurons could be identified via typical β-III-tubulin and MAP-2 immunostaining10,12. In addition, glia was specifically identified via GFAP immunostaining10. Mature neurons developed synaptic spines, which were close to the presynaptic specializations identified by the immunostaining of the synaptic protein maker, synapsin-1 (Figure 2)12. These results indicated that mature cells with well-developed synapses were obtained through this method. This result suggests its important role in future function studies.
Meanwhile, several neuron subtypes were recognized through immunocytochemistry experiments (Figure 3). Peptidergic neurons, which contain various neuropeptides, were immunostained with substance P13. Purinergic neurons with expressed vesicular nucleotide transporters were identified via SLC17A9 staining14. Nitrergic neurons were visualized with DYNLL-2, which connects nNOS with motor proteins in neurons15. Cholinergic neurons were immunoreactive with choline acetyltransferase16.
Figure 1. Phase-contrast images of primary cells isolated from the rat bladder culture taken at 1, 3, and 7 days after plating (A, B, C, respectively). Scale bar: 50 μm. Please click here to view a larger version of this figure.
Figure 2. Immunofluorescence images of primary cells isolated from the rat bladder. Confocal microscopy analysis showed neuron cytoskeleton protein staining (β-III-tubulin, RRID: AB_2827688, 1:200) in primary culture neurons (A) and in whole mount bladder preparation (B). In primary culture neurons, neuronal phosphoprotein immunostaining (MAP 2, RRID:AB_2827689, 1:200) was also visualized (C). Glia were identified via glial fibrillary acidic protein staining (D; RRID: AB_627673, 1:50). Synapsins were visualized via synapsin protein staining (Synapsin-1, RRID: AB_2798146, 1:200) in cellular (E) and tissue (F) levels. The secondary antibodies used were as follows: Alexa Fluor 488 (green, goat anti-rabbit lgG, 1:200), Alexa Fluor 555 (red, goat anti-mouse lgG, 1:200). The nucleus was visualized using Hoechst 33342 (A, C, D, E; blue, 1 μg/mL). Scale bar: 50 μm. Please click here to view a larger version of this figure.
Figure 3. Immunofluorescence images of several neuron subtypes of primary neurons. Peptidergic neurons were immunostained with substance P (A; RRID: AB_785913, 1:50). Purinergic neurons were identified via SLC17A9 staining (B; RRID: AB_10597575, 1:200). Nitrergic neurons were visualized via DYNLL-2 staining (C; RRID: AB_654147, 1:50). Cholinergic neurons were immunoreactive with choline acetyltransferase (D; RRID: AB_2244867, 1:100). The secondary antibodies used were as follows: Alexa Fluor 488 (green, goat anti-rabbit lgG, 1:200), Alexa Fluor 555 (red, goat anti-mouse lgG, 1:200). The nucleus was visualized using Hoechst 33342 (A, B, C, D, blue, 1 μg/mL). Scale bar: 50 μm. Please click here to view a larger version of this figure.
Ingredients | Molarity (mM) |
NaCI | 120 |
KCI | 5.9 |
NaHCO3 | 25 |
Na2HPO4·12H2O | 1.2 |
MgCI2·6H2O | 1.2 |
CaCI2 | 2.5 |
Glucose | 11.5 |
Table 1. Krebs solution composition
Plate Preparation
The use of glass coverslips in 6-, 12-, or 48-well culture plates for immunofluorescent or calcium imaging experiments is an economical and sample-sparing operation. Cells grow well in plates without coverslips during the preparation of primary cell cultures. Therefore, coverslips are dispensable in experiments, such as Western blot or polymerase chain reaction. Furthermore, coating is a necessary step before plating cells, with or without coverslips. Laminin and poly-D-lysine are common choices in coating neurons, particularly laminin, which is essential for neuron growth17.
Media Preparation
After first medium replacement, cell isolation requires media without serum because serum stimulates cell division and leads to a limited neuron-growing space18. Thus, neuron growth factors are crucial. The quality of B27 and GDNF can vary largely from different batches and cause major effects on neuron growth19. Therefore, checking the lot number of the media is recommended when neuron yield is poor. Meanwhile, fresh media stock is crucial; the required amount should be calculated and prepared in advance each time before media are replaced.
Animals
Sprague–Dawley rats are used in this method. C57BL/6 mice are also acceptable in this experiment. Therefore, other strains of rats or mice may also be adopted for this method despite a few variations in morphology and neuronal circuitry. In terms of different animal models, researchers should develop an optimized and targeted protocol. Furthermore, young animals should always be considered prior to the application of this method.
Tissue Treatment
During the experiments, except for the digestive process, keeping tissues at a low temperature is essential to increase cell viability, which can reduce cell metabolism and avoid energy deficit. Oxygen levels, nutrition, and pH can also affect cell yield11. Moreover, for other tissues, we suggest that researchers perform this method with adjusted digestion condition.
Cell Culture
One remarkable characteristic of neurons when inoculated is their quick adherence to coated plates20. In this case, changing media after 1 h of culture is recommended to gain a high proportion of neurons. Moreover, when most of the cells start to grow pseudopodium, the frequency of changing media can be reduced appropriately depending on the color of the media and the cellular state. Primary cell culture in a good state displays black soma with a bright border.
Most nerve cells isolated from the bladder are bladder intramural ganglia, which consist of afferent and autonomic efferent innervations of the bladder13. Moreover, no major pelvic ganglia are present in the harvested tissue. It distributes below the bladder neck21.
Limitation
This is a preliminary research to isolate and culture neurons and glia. Many attempts had been done, like cytarabine treatment or density gradient centrifugation. However, the proportion of desired cells was still not ideal, and even more cell loss appeared. Moreover, traditional digestive conditions in this protocol, such as 37 °C, are likely to kill off some sensitive neuron types, and cause potential gene expression artifacts22.
In conclusion, this protocol offers a method to culture neurons and glia from rat bladder. The isolation is easy to repeat, time efficient, and involves minimal microbial contamination. Although improvement evoking the purity of neurons is necessary, we hope this method contributes to LUTNS research.
The authors have nothing to disclose.
This study was supported by the National Natural Science Foundation of China (Grant no. 81673676) and Dongguan Science and Technology Bureau (Grant no. 2019622101002). The authors thank Dr. Maryrose Sullivan (Assistant Professor in Surgery, Harvard Medical School) for technical consulting.
0.25% trypsin | Gibico | 15050065 | Enzyme digestion |
48-well culture plate | Corning | 3548 | Coating dish |
antibiotic/antimycotic | Gibico | 15240062 | Culture media/Rinse media |
Anti-Glial Fibrillary Acidic Protein Antibody | Santa Cruz | sc-33673 | ICC |
B-27 | Gibico | 17504044 | Culture media |
BSA Fraction V | Gibico | 332 | Enzyme digestion |
Choline Acetyltransferase Antibody | Abcam | ab18736 | ICC |
CO2 Incubator | Heraeus | B16UU | Cells culture |
Collagenase type II | Sigma | 2593923 | Enzyme digestion |
DMEM/F-12 | Gibico | 11330032 | Rinse media |
DYNLL2 Antibody | Santa Cruz | sc-13969 | ICC |
Fetal Bovine Serum | Gibico | 10100147 | Culture media/Rinse media |
Forceps | Shanghai Jin Zhong Medical Devices | 1383 | 10 cm; Sterile operation |
Glass breakers | Huan Qiu Medical Devices | 1101 | 50 ml; Sterile operation |
Glass coverslips | WHB Scientific | WHB-48-CS | Coating dish |
Glass dishes | Huan Qiu Medical Devices | 1177 | 100 mm; Sterile operation |
Goat Anti-Rat IgG(H+L), Mouse ads-Alexa Fluor 488 | Southernbiotech | 3050-30 | ICC |
Goat Anti-Rat IgG(H+L), Mouse ads-Alexa Fluor 555 | Southernbiotech | 3050-30 | ICC |
Hoechst 33342 | BD | 561908 | ICC |
Laminar flow bench | Su Jie Medical Devices | CB 1400V | Sterile operation |
Laminin | Sigma | L2020 | Coating dish |
L-glutamine | Gibico | 25030081 | Culture media |
MAP-2 Antibody | Affinity | AF5156 | ICC |
Murine GDNF | Peprotech | AF45044 | Culture media |
Neurobasal-A Medium | Gibico | 10888022 | Culture media |
Ophthalmic scissors | Shanghai Jin Zhong Medical Devices | J21010 | 12.5 cm; Sterile operation |
Pipettes | Eppendorf | 3120000240 | 100-1000 ul; Reagent and sample pipetting |
Pipettes | Eppendorf | 3120000267 | 10-100 ul; Reagent and sample pipetting |
Poly-D-lysine | Sigma | P7280 | Coating dish |
Refrigerated centrifuge | Ping Fan Instrument | TGL-16A | Enzyme digestion |
Shaking incubator | Haimen Kylin-Bell Lab Instruments | T8-1 | Enzyme digestion |
SLC17A9 Antibody | MBL International | BMP079 | ICC |
Spoons nucleus divider | Shanghai Jin Zhong Medical Devices | YZR030 | 12 cm; Sterile operation |
Substance P Antibody | Santa Cruz | sc-58591 | ICC |
Surgical scissors | Shanghai Jin Zhong Medical Devices | J21130 | 16 cm; Sterile operation |
Surgical towel | Fu Kang Medical Devices | 5002 | 40 x 50 cm; Sterile operation |
Synapsin-1 Antibody | CST | 5297T | ICC |
Tubulin beta Antibody(β-III-tubulin) | Affinity | AF7011 | ICC |