Several different methods have been established for multiplex immunostaining using primary antibodies from the same host species. Here, we describe the use of microwave-mediated antibody stripping and of fluorophore-tyramide to block antibody cross-reactivity during multiplex immunostaining on formalin-fixed paraffin-embedded mouse adrenal sections.
Immunostaining is widely used in biomedical research to show the cellular expression pattern of a given protein. Multiplex immunostaining allows labeling using multiple primary antibodies. To minimize antibody cross-reactivity, multiplex immunostaining using indirect staining requires unlabeled primary antibodies from different host species. However, the appropriate combination of different species antibodies is not always available. Here, we describe a method of using unlabeled primary antibodies from the same host species (e.g., in this case both antibodies are from rabbit) for multiplex immunofluorescence on formalin-fixed paraffin-embedded (FFPE) mouse adrenal sections. This method uses the same procedure and reagents used in the antigen retrieval step to strip the activity of the previously stained primary antibody complex. Slides were stained with the first primary antibody using a general immunostaining protocol followed by a binding step with a biotinylated secondary antibody. Then, an avidin-biotin-peroxidase signal development method was used with fluorophore-tyramide as the substrate. The immunoactivity of the first primary antibody complex was stripped through immersion in a microwaved boiling sodium citrate solution for 8 min. The insoluble fluorophore-tyramide deposition remained on the sample, which allowed the slide to be stained with other primary antibodies. Although this method eliminates most false positive signals, some background from antibody cross-reactivity may remain. If the samples are enriched with endogenous biotin, a peroxidase-conjugated secondary antibody may be used to replace the biotinylated secondary antibody to avoid the false positive from recovered endogenous biotin.
In multiplex immunostaining, direct staining using conjugated primary antibodies can provide informative results. Without using secondary antibodies, the direct staining method has a low risk of false colocalization signals from antibody cross-reactivity. However, the conjugated reporters (fluorophore, enzymes) or biotin on the primary antibody limit its future use. Alternatively, indirect immunostaining usually provides stronger signals by using an unconjugated primary antibody with a labeled secondary antibody. Ideally, unconjugated primary antibodies used in multiplex immunostaining should come from different host species to avoid antibody cross-reactivity. However, the appropriate combination of primary antibodies from different host species is not always available.
Several methods have been established to eliminate the risk of the secondary antibody reacting with an undesired primary antibody. One common method is the use of a F(ab) monomeric antibody to block any remaining binding epitopes on the first primary antibody complex before staining with the second primary antibody1. Antibody stripping, which is similar to the strip and reprobe of a Western blot sheet, removes the previously stained antibody complex without stripping the deposition of detectable reporter molecules such as 3,3'-diaminobenzidine tetrahydrochloride (DAB)2 and the fluorescent tyramide deposition3. With this method, reporter molecules in different colors can show a multiplex result on the same slide. The multiplex staining is also achievable by the complete removal of the previously deposited layers of antibodies and the alignment of subsequently acquired images from other antibodies4,5. These methods all give reliable results, though each method has its limitations and requires either complicated procedures or a special imaging system.
The present protocol shows the application of an antibody stripping method with the use of commonly available buffers. This protocol can be used to perform multiplex immunofluorescent staining on formalin-fixed paraffin-embedded (FFPE) mouse adrenal sections with two unlabeled primary antibodies from the same host species.
1. Staining with the First Antibody
2. Strip the First Antibody
3. Stain with the Second Antibody
4. Imaging Using a Fluorescence Microscope to Detect Signals
The results were obtained from samples treated with all steps described including the antigen retrieval step 1.2. All secondary antibodies used here were biotinylated. Fluorophore-tyramide was used to develop signals from the first and second primary antibodies. Images were captured using a fluorescence microscope equipped with a FITC cube (for green fluorescence), a TxRED cube (for Cy3), and a DAPI cube (for DAPI).
Microwaving-mediated stripping eliminates the cross-reactivity.
Mouse FFPE adrenal sections were stained using two primary rabbit antibodies. Without stripping (Figure 1A-C), the secondary antibody for TH picked up 3βHSD(+) sites and gave red signals in the adrenal cortex (Figure 1B). The lack of stripping led to the false colocalization signals seen in yellow (Figure 1C). This cross-reactivity comes from (1) the HRP enzyme that catalyzed the first tyramide reaction and (2) the antibody species cross-reactivity. To remove the antibody cross-reactivity and the HRP from the first immunostaining, we tested a 1 min (Figure 1D-F) and an 8 min microwave-mediated stripping (Figure 1G-I). Both treatments were sufficient to eliminate the nonspecific signal, giving clean double staining results (Figure 1F,I). The negative control followed all of the same steps with the exception of incubation with primary antibodies (Figure 1J). No significant signal was picked up in the negative control. We found that an 8 min stripping in a boiling citrate buffer was sufficient to eliminate antibody cross-reactivity for many antibodies commonly used in the adrenal gland (Figure 2).
The limitation — the efficacy of the microwave-mediated stripping is antibody-dependent.
Although the microwave-mediated stripping used in this protocol works for most cases, there are limitations to this method. For some antibodies, a microwave-mediated stripping method with a citrate buffer may not completely remove the antibody cross-reactivity. For example, an 8 min stripping removed most nonspecific signals from the mouse anti-TH antibody and the mouse anti-CYP2F2 antibody, but a weak false positive signal was still detectable (the medulla in Figure 3E and the inner cortex in Figure 3K). Note that an increase of the microwaving time to 20 min still did not completely remove antibody cross-reactivity (Figure 3H,K).
Figure 1: Representative double immunostaining on P1 FFPE mouse adrenals. FFPE mouse adrenal sections were stained with two primary antibodies from rabbits: anti-3βHSD (green = cortex), anti-TH (red = medulla). The three groups of stains include the three different stripping procedures used: (A-C) no stripping, (D-F) 1 min stripping, and (G-I) 8 min stripping. Note that without microwaving, the secondary antibody with TH still picked up 3βHSD signals, whereas specific staining results were obtained in the 1 min and 8 min microwave treated groups. There is no positive signal in the negative control, not incubated with primary antibodies. Scale bar = 100 µm. DAPI = cell nuclei, blue. Please click here to view a larger version of this figure.
Figure 2: Representative double immunostaining on P21 FFPE mouse adrenals. The FFPE mouse adrenal sections were stained with two primary antibodies from rabbits in the following order: anti-β-catenin (green = outer cortex) and then anti-20αHSD (red = inner cortex). An 8 min stripping step was performed in between. Scale bar = 100 µm; DAPI = cell nuclei, blue. Please click here to view a larger version of this figure.
Figure 3: Some antibodies may not be fully stripped, which can lead to weak nonspecific signals. The FFPE mouse adrenal sections were stained with two primary antibodies from mice: anti-CYP2F2 (green = inner cortex) and anti-TH (red = medulla). The results from the no stripping group (A-C) showed that the reactions for detecting the CYP2F2 protein still stained the TH(+) area. A false colocalization was seen in the adrenal medulla (C). Although an 8 min and a 20 min microwave treatment reduced the green fluorescence intensity in the medulla, a noticeable background is still present (D-I). The anti-CYP2F2 antibody is another example showing that the cross-reactivity cannot be fully removed even after 20 min of microwaving (J-L). Note that there was no positive signal in the negative control, not incubated with primary antibodies, indicating the false positive signal was from the antibody cross-reactivity (M). Scale bar = 100 µm; DAPI = cell nuclei, blue. Please click here to view a larger version of this figure.
Multiplex immunostaining is useful to examine the cellular colocalization of two or more antigens. This widely used technique gives convincing colocalization results when primary antibodies are conjugated with different reporters (direct staining). However, direct staining usually provides weaker signals compared to indirect staining, which involves conjugated secondary antibodies to detect the primary antibodies. In indirect staining, a high-quality multiplex immunostaining result relies on whether the secondary antibodies can distinguish between the different primary antibodies. Due to the possible antibody cross-reactivity, multiplex staining utilizing the indirect staining method is seen more clearly with primary antibodies from different host species. Carl and others developed a protocol using an excess of unconjugated IgG F(ab) fragment to block antibody cross-reactivity1. A similar strategy is used in the "mouse-on-mouse" staining which uses a F(ab) monomeric anti-mouse antibody to prevent the anti-mouse secondary antibody from detecting any endogenous mouse immunoglobulin in the tissue. However, this blocking method is time consuming and may not completely block antibodies from previous steps, especially if the detecting antigens are of high abundance2.
Heat-mediated stripping is another method to prevent antibody cross-reactivity in multiplex immunostaining. The concept is similar to the strip and reprobe method of a Western blot. The use of a microwave to boil the slides in a citrate buffer had a marked positive effect on blocking the antibody cross-reactivity. Two 5 min microwave treatments between sequential rounds of colorimetric immunostaining allow the detection of multiple antigens on the same slide using mouse monoclonal antibodies2. Microwave treatments combined with the thyramide signal amplification (TSA) method, which uses fluorophore-tyramide as the substrate of HRP, are also useful for immunofluorescence double staining3,6,7. The microwave treatment between the first and second staining cycles blocks the activity of the first immunocomplex without washing out its fluorescent tyramide precipitation. However, a microwave treatment may not be able to fully prevent contamination in staining8. Although some methods using different types of stripping buffers may provide a better stripping efficacy, specialized buffers with longer incubation times are needed, or samples need to undergo image acquisition before another stain is applied4,5,7,9,10,11. Here we demonstrate a simple method with a less complicated procedure and a common buffer for microwave-mediated antigen retrieval in multiplex immunofluorescent staining. Although this method eliminates most cross-reactivity, users should be aware of a possible weak false colocalization seen with some antibodies even after a 20 min microwave treatment.
Endogenous biotin can be used as a marker of steroidogenic cells in the adrenal cortex12. Streptavidin-conjugated fluorophore alone is sufficient to detect endogenous biotin and lights up the entire adrenal cortex, especially in frozen sections. Because endogenous biotin is usually blocked in FFPE samples, the avidin-biotin-peroxidase procedure (i.e., ABC kit) is still widely used to amplify targets in FFPE adrenal samples. It is important to note that the antigen retrieval step also unmasks endogenous biotin and induces its immunoactivity13. Because our method combines microwave-mediated antigen retrieval and the use of streptavidin-conjugated HRP, it is possible that endogenous biotin will lead to false positive signals, especially in tissues rich with endogenous biotin (e.g., the liver, kidneys, and some tumors)13. If the avidin-biotin-peroxidase procedure is needed to amplify the signal, an additional blocking step such as preincubation with free avidin and free biotin may help to reduce the endogenous biotin signal14. While our method gives a low endogenous biotin background on FFPE mouse adrenals, it is important to always include a negative control with each sample at all times when using the avidin-biotin-peroxidase procedure. The alternative approach is to use a peroxidase-conjugated secondary antibody instead of the biotinylated secondary antibody.
Our results demonstrate that microwave treatment with a citrate buffer is a useful method for multiplex immunofluorescence staining. However, it should be noted that not all cross-reactivities can be fully blocked. A weak false colocalization is possible. This protocol can be used as an alternative approach when an appropriate combination of primary antibodies from different host species is not available. Users should be aware of possible false positive from the remaining cross-reactivity as well as the recovered endogenous biotin. Proper negative controls should be included at all times.
The authors have nothing to disclose.
This work is supported by NIH R00 HD032636.
Antifade Mounting Medium | Vector Laboratories | H-1000 | |
Biotinylated donkey anti-mouse | JacksonImmuno | 715-066-151 | 1:500 dilution |
Biotinylated donkey anti-rabbit | JacksonImmuno | 711-066-152 | 1:500 dilution |
DAPI | BioLegend | 422801 | 2 μg/mL in distilled water |
Fluorescence microscope | ECHO | Revolve 4 | |
Horseradish peroxidase-conjugated streptavidin | JacksonImmuno | 016-030-084 | 1:1000 dilution |
Microwave oven, 700W | General Electric | JEM3072DH1BB | |
Mouse anti-CYP2F2 | Santa Cruz, | SC-374540 | 1:250 dilution |
Mouse anti-TH | Santa Cruz, | SC-25269 | 1:1000 dilution |
Normal donkey serum | JacksonImmuno | 017-000-121 | 2% serum in PBST |
Rabbit anti-20αHSD | Kerafast, | EB4002 | 1:500 dilution |
Rabbit anti-3βHSD | TransGenic, | KO607 | 1:250 dilution |
Rabbit anti-TH | NOVUS, | NB300-109 | 1:1000 dilution |
Rabbit anti-β-catenin | Abcam, | ab32572 | 1:500 dilution |
Streptavidin Horseradish Peroxidase (SA-HRP) | JacksonImmuno | 016-303-084 | 1:1000 dilution |
TSA Cy3 Tyramide | PerkinElmer | SAT704B001EA | 1:100 dilution |
TSA Fluorescein Tyramide | PerkinElmer | SAT701001EA | 1:100 dilution |