Channelrhodopsin-assisted circuit mapping (CRACM) is a precision technique for functional mapping of long-range neuronal projections between anatomically and/or genetically identified groups of neurons. Here, we describe how to utilize CRACM to map auditory brainstem connections, including the use of a red-shifted opsin, ChrimsonR.
When investigating neural circuits, a standard limitation of the in vitro patch clamp approach is that axons from multiple sources are often intermixed, making it difficult to isolate inputs from individual sources with electrical stimulation. However, by using channelrhodopsin assisted circuit mapping (CRACM), this limitation can now be overcome. Here, we report a method to use CRACM to map ascending inputs from lower auditory brainstem nuclei and commissural inputs to an identified class of neurons in the inferior colliculus (IC), the midbrain nucleus of the auditory system. In the IC, local, commissural, ascending, and descending axons are heavily intertwined and therefore indistinguishable with electrical stimulation. By injecting a viral construct to drive expression of a channelrhodopsin in a presynaptic nucleus, followed by patch clamp recording to characterize the presence and physiology of channelrhodopsin-expressing synaptic inputs, projections from a specific source to a specific population of IC neurons can be mapped with cell type-specific accuracy. We show that this approach works with both Chronos, a blue light-activated channelrhodopsin, and ChrimsonR, a red-shifted channelrhodopsin. In contrast to previous reports from the forebrain, we find that ChrimsonR is robustly trafficked down the axons of dorsal cochlear nucleus principal neurons, indicating that ChrimsonR may be a useful tool for CRACM experiments in the brainstem. The protocol presented here includes detailed descriptions of the intracranial virus injection surgery, including stereotaxic coordinates for targeting injections to the dorsal cochlear nucleus and IC of mice, and how to combine whole cell patch clamp recording with channelrhodopsin activation to investigate long-range projections to IC neurons. Although this protocol is tailored to characterizing auditory inputs to the IC, it can be easily adapted to investigate other long-range projections in the auditory brainstem and beyond.
Synaptic connections are critical to neural circuit function, but the precise topology and physiology of synapses within neural circuits are often difficult to probe experimentally. This is because electrical stimulation, the traditional tool of cellular electrophysiology, indiscriminately activates axons near the stimulation site, and in most brain regions, axons from different sources (local, ascending, and/or descending) intertwine. However, by using channelrhodopsin assisted circuit mapping (CRACM)1,2, this limitation can now be overcome3. Channelrhodopsin (ChR2) is a light activated, cation-selective ion channel originally found in the green alga Chlamydomonas reinhardtii. ChR2 can be activated by blue light of a wavelength around 450-490 nm, depolarizing the cell through cation influx. ChR2 was first described and expressed in Xenopus oocytes by Nagel and colleagues4. Shortly after that, Boyden and colleagues5 expressed ChR2 in mammalian neurons and showed that they could use light pulses to reliably control spiking on a millisecond timescale, inducing action potentials ~10 ms after activation of ChR2 with blue light. Optogenetic channels with even faster kinetics have been found recently (e.g., Chronos6).
The basic approach to a CRACM experiment is to transfect a population of putative presynaptic neurons with a recombinant adeno-associated virus (rAAV) that carries the genetic information for a channelrhodopsin. Transfection of neurons with rAAV leads to the expression of the encoded channelrhodopsin. Typically, the channelrhodopsin is tagged with a fluorescent protein like GFP (Green Fluorescent Protein) or tdTomato (a red fluorescent protein), so that transfection of neurons in the target region can easily be confirmed with fluorescence imaging. Because rAAVs are non-pathogenic, have a low inflammatory potential and long-lasting gene expression7,8, they have become a standard technique to deliver channelrhodopsins to neurons. If, after transfection of a putative presynaptic population of neurons, activation of a channelrhodopsin through light flashes elicits postsynaptic potentials or currents in the target neurons, this is evidence of an axonal connection from the transfected nucleus to the recorded cell. Because severed axons in brain slice experiments can be driven to release neurotransmitter through channelrhodopsin activation, nuclei that lie outside of the acute slice but send axons into the postsynaptic brain region can be identified with CRACM. The power of this technique is that the connectivity and physiology of identified long range synaptic inputs can be directly investigated.
In addition to channelrhodopsins that are excitable by blue light, investigators have recently identified several red-shifted channelrhodopsins9,10, including Chrimson and its faster analog ChrimsonR, both of which are excited with red light of ~660 nm6. Red-shifted opsins are of interest because red light penetrates tissue better than blue light, and red light may have a lower cytotoxicity than blue light10,11,12. Red-shifted channelrhodopsins also open up the possibility of dual color CRACM experiments, where the convergence of axons from different nuclei on the same neuron can be tested in one experiment6,13,14. However, current red-shifted opsins often exhibit unwanted cross-activation with blue light15,16,17, making two color experiments difficult. In addition, some reports have indicated that ChrimsonR undergoes limited axonal trafficking, which can make it challenging to use ChrimsonR for CRACM experiments16,17.
Nearly all ascending projections from the lower auditory brainstem nuclei converge in the inferior colliculus (IC), the midbrain hub of the central auditory pathway. This includes projections from the cochlear nucleus (CN)18,19, most of the superior olivary complex (SOC)20, and the dorsal (DNLL) and ventral (VNLL) nuclei of the lateral lemniscus21. Additionally, a large descending projection from the auditory cortex terminates in the IC18,19,20,21,22, and IC neurons themselves synapse broadly within the local and contralateral lobes of the IC23. The intermingling of axons from many sources has made it difficult to probe IC circuits using electrical stimulation24. As a result, even though neurons in the IC perform computations important for sound localization and the identification of speech and other communication sounds25,26, the organization of neural circuits in the IC is largely unknown. We recently identified VIP neurons as the first molecularly identifiable neuron class in the IC27. VIP neurons are glutamatergic stellate neurons that project to several long-range targets, including the auditory thalamus and superior colliculus. We are now able to determine the sources and function of local and long-range inputs to VIP neurons and to determine how these circuit connections contribute to sound processing.
The protocol presented here is tailored to investigating synaptic inputs to VIP neurons in the IC of mice, specifically from the contralateral IC and the DCN (Figure 1). The protocol can be easily adapted to different sources of input, a different neuron type or a different brain region altogether. We also show that ChrimsonR is an effective red-shifted channelrhodopsin for long range circuit mapping in the auditory brainstem. However, we demonstrate that ChrimsonR is strongly activated by blue light, even at low intensities, and thus, to combine ChrimsonR with Chronos in two-color CRACM experiments, careful controls must be used to prevent cross-activation of ChrimsonR.
Obtain approval from the local Institutional Animal Care and Use Committee (IACUC) and adhere to NIH guidelines for the care and use of laboratory animals. All procedures in this protocol were approved by the University of Michigan IACUC and were in accordance with NIH guidelines for the care and use of laboratory animals.
1. Surgery Preparations
2. Surgery
3. Surgical Follow Up
4. Brain Slice Preparation and Confirmation of Injection Target
5. In Vitro Recording and CRACM Experiment
NOTE: To provide optical stimulation of Chronos and ChrimsonR, we use LEDs coupled to the epifluorescence port of the microscope. However, lasers can be used instead of LEDs. If using lasers, obtain prior approval from institutional safety officials and follow appropriate guidelines for safe laser use.
We crossed VIP-IRES-Cre mice (Viptm1(cre)Zjh/J) and Ai14 Cre-reporter mice (B6.Cg-Gt(ROSA)26Sortm14(CAG-tdTomato)Hze/J) to generate F1 offspring in which VIP neurons express the fluorescent protein tdTomato. F1 offspring of either sex were used, aged postnatal day (P) 21 to P70. A total of 22 animals were used in this study.
Stereotaxic injection of AAV1.Syn.Chronos-GFP.WPRE.bGH into the right IC of VIP-IRES-Cre x Ai14 mice using coordinates shown in Table 1 resulted in strong Chronos-EGFP expression in the right IC (Figure 2A). Visual inspection of Chronos-EGFP fluorescence indicated that most of the somata labeled in the right IC were located in the central nucleus of the IC (ICc), but labeled somata were sometimes also present in the dorsal cortex of the IC (ICd) and occasionally in the lateral cortex of the IC (IClc). The targeting and extent of transfection should be checked for every animal used in an experiment, as expression of channelrhodopsins in non-targeted regions can lead to false positives. To achieve broader or more restricted expression of Chronos, the amount of deposited virus as well as the stereotaxic coordinates can be easily adjusted to achieve the desired outcome.
Stereotaxic injection of AAV1.Syn.Chronos-GFP.WPRE.bGH into the DCN (see coordinates in Table 1) of VIP-IRES-Cre x Ai14 mice resulted in strong transfection of DCN neurons (Figure 2B). To confirm selective transfection of the DCN, the brainstem of every animal should be sliced to verify that EGFP expression was present and limited to the DCN. If there is no transfection or if there is considerable expression of EGFP in the auditory nerve or VCN, recordings should not be performed. Using the coordinates shown in Table 1 with a total injection volume of 40 nL, Chronos-EGFP expression will be limited to the DCN in most cases. EGFP-labeled axons were present in the left (contralateral) ICc 3 weeks after injection for both IC and DCN injection sites (Figure 2A right, 2B right).
To test the long-range trafficking of ChrimsonR, AAV1.Syn.ChrimsonR-tdTomato.WPRE.bGH was injected into the right DCN of VIP-IRES-Cre x Ai14 mice, using the same coordinates as with Chronos injections. ChrimsonR injection led to strong expression in the DCN, with tdTomato fluorescence visible in cells and fibers (Figure 3A). In the contralateral ICc, fibers strongly labeled with tdTomato were clearly visible after 3 weeks, demonstrating the long-range trafficking capability of the ChrimsonR-tdTomato construct when injected into auditory brainstem nuclei (Figure 3B). Optical activation of ChrimsonR elicited EPSPs in IC VIP neurons (Figure 3C), indicating that ChrimsonR is a useful tool for long-range CRACM experiments when the experimental parameters demand the use of red light instead of blue light. However, we found that ChrimsonR was readily activated with blue light, showing the same threshold for blue light activation as Chronos (Figure 4). The sensitivity of ChrimsonR to blue light means that special care must be taken to distinguish between inputs transfected with ChrimsonR or Chronos in the same animal13.
When targeting recordings to VIP neurons in the contralateral (left) ICc after injections into the right IC, blue light flashes elicited excitatory postsynaptic potentials (EPSPs) or inhibitory postsynaptic potentials (IPSPs). This confirms commissural projections to VIP neurons. To analyze commissural EPSPs and IPSPs separately, we used receptor antagonists to block IPSPs during EPSP recordings, and vice versa. Representative EPSPs and IPSPs recorded during CRACM experiments are shown in Figure 5. IPSPs were observed in 6 out of 12 tested ICc VIP neurons. IPSPs were small (1.53 mV ± 0.96 mV) and had moderate kinetics. The 10 – 90% rise times of IPSPs were 7.8 ms ± 2.1 ms, halfwidths were 15.1 ms ± 6.8 ms, and decay time constants were 32.4 ms ± 17.0 ms (Figure 5A, left). IPSPs were mediated by GABAA receptors, as they were blocked by 5 µM gabazine, a GABAA receptor antagonist (Figure 5A, right; n = 6). EPSPs were observed in 11 out of 27 ICc VIP neurons tested. EPSPs were also small (1.52 mV ± 1.08 mV) and had moderate kinetics. The 10 – 90% rise times of EPSPs were 8.3 ms ± 4.3 ms, halfwidths were 19.6 ms ± 7.6 ms, and decay time constants were 43.5 ms ± 16.8 ms (Figure 5B "Control"). EPSPs were mediated by AMPA and NMDA receptors. Application of 50 µM D-AP5, an NMDA receptor antagonist, reduced EPSP halfwidth (14.3 ms ± 4.7 ms, p = 0.006) and trended toward reducing the rise time (6.3 ms ± 1.6 ms, p = 0.09), decay time constant (30.6 ms ± 7.3 ms, p = 0.06), and EPSP amplitude (1.38 ± 0.33 mV, p = 0.105; ANOVA for repeated measurements with Tukey post-hoc test). Application of 10 µM NBQX, an AMPA receptor antagonist, blocked the remainder of the EPSP (Figure 5B "+ AP5 & NBQX").
Recordings of VIP neurons in the left ICc after DCN injections revealed EPSPs evoked by blue light flashes, confirming synaptic inputs from the DCN to VIP neurons in the IC. DCN CRACM experiments were conducted with GABAergic and glycinergic blockers in the bath to block spontaneous IPSPs. We found that 2-5 ms pulses of blue light elicited EPSPs in 19 of 25 neurons tested. Light-evoked EPSPs had moderate amplitudes (2.85 mV ± 2.98 mV) and relatively slow rise times (4.2 ms ± 1.3 ms), halfwidths (20.6 ms ± 14.4 ms) and decay time constants (22.0 ms ± 6.7 ms) (n = 6 cells, data not shown).
All PSPs evoked by Chronos or ChrimsonR activation were elicited in an all-or-none fashion and did not scale their amplitude with increasing optical power (data not shown). However, this result depends on the number and physiology of the transfected synapses providing input to a particular neuron and is therefore likely to vary depending on the particular combination of axonal projection and neuron type being investigated.
Figure 1: rAAV injection sites and experimental setup. (A) Injection site and experimental setup to investigate commissural projections. Left: An rAAV construct (e.g., rAAV1.Syn.Chronos-GFP.WPRE.bGH) is injected into the right IC and targeted recordings are performed in the contralateral IC. Right: During patch clamp recordings, Chronos-transfected fibers are excited with blue light to elicit postsynaptic potentials. (B) Injection site and experimental setup to investigate long-range projections from DCN to IC. Left: The ChrimsonR construct is injected into the right DCN and targeted recordings are performed in the contralateral IC. Right: During patch clamp recordings, ChrimsonR-transfected fibers are excited with red light to record ChrimsonR evoked postsynaptic potentials. Please click here to view a larger version of this figure.
Figure 2: Chronos-EGFP expression after injections into IC and DCN. (A) Left: Image of coronal IC slice showing tdTomato-labeled VIP neurons throughout the IC (magenta) and Chronos-EGFP expression in somata localized to the injection sites in the right IC (green). Right: Higher magnification image showing a recorded VIP neuron (white-green) in the IC contralateral to the injection site. Green puncta are Chronos-EGFP expressing projections from the contralateral IC. (B) Image of coronal brainstem slice showing Chronos-EGFP expression in the DCN after rAAV-Chronos-EGFP injection. Left: Image of the DCN, showing transfected DCN and EGFP-positive fibers entering the dorsal acoustic stria. Middle: Higher magnification image showing Chronos-transfected cell bodies in the DCN. Right: Chronos-EGFP expression in fibers and terminals in the contralateral IC from long range DCN-IC projections. Please click here to view a larger version of this figure.
Figure 3: ChrimsonR-tdTomato expression in the DCN and DCN projections to the IC. (A) Image of a coronal brainstem slice from a mouse in which the right DCN was injected with rAAV1.Syn.ChrimsonR-tdTomato.WPRE.bGH. Left: Image of ChrimsonR expression in the right DCN. Right: Higher magnification image of right DCN showing strong transfection of neurons with ChrimsonR. (B) High magnification image of ChrimsonR-transfected DCN axons in the IC. (C) Optogenetically evoked EPSPs recorded from a VIP neuron in the IC contralateral to the rAAV-ChrimsonR injected DCN. Original traces are shown in light grey and average EPSP is in red. Orange box indicates timing of 590 nm light pulse. Scale bars = 20 ms/0.5 mV. Please click here to view a larger version of this figure.
Figure 4: Activation of ChrimsonR by low levels of blue light. (A) Activation of Chronos in commissural projections by pulses of 470 nm blue light. Top: Original traces (light grey) and average (cyan) of Chronos-driven IPSPs, evoked at an optical power slightly above the threshold for Chronos activation (scale bars show 20 ms/0.5 mV). Bottom: Relationship between optical power at 470 nm and the probability of observing a Chronos-evoked PSP. (B) Activation of ChrimsonR with 470 nm blue light. Top: Original traces (light grey) and average (red) of ChrimsonR-driven EPSPs, evoked with 470 nm blue light at the same optical power used in A, top (scale bars show 20 ms/0.5 mV). Bottom: Relationship between optical power at 470 nm and the probability of observing a ChrimsonR-driven PSP. Note that the threshold for blue light activation of ChrimsonR PSPs was identical to the threshold for eliciting Chronos PSPs. Please click here to view a larger version of this figure.
Figure 5: Characterization of light-evoked PSPs from commissural synapses onto VIP neurons. The right IC was injected with rAAV1.Syn.Chronos-GFP.WPRE.bGH and recordings were made from VIP neurons in the contralateral ICc. (A) Optogenetically-evoked IPSPs were evoked by 2-5 ms blue light flashes (left) while EPSPs were blocked by 10 µM NBQX and 50 µM D-AP5. IPSPs were abolished by gabazine (right). (B) Optogenetically-evoked EPSPs were evoked by 2-5 ms blue light flashes (left) while IPSPs were blocked with 1 µM strychnine and 5 µM gabazine. Wash-in of 50 µM D-AP5 significantly reduced the halfwidth and decay time constant of light-evoked EPSPs (middle). Wash-in of 10 µM NBQX abolished the remaining EPSP (right). Original traces in A and B are shown in light grey, and averages from up to 50 individual traces are shown in black. From Goyer et al., 2019. Please click here to view a larger version of this figure.
X (lateral) | Y (caudal) | Z (depth) | |
Right IC penetration 1 | 1,000 µm | -900 µm | 2,250-1500 µm (250 µm increments) |
Right IC penetration 2 | 1,250 µm | -900 µm | 2,250-1750 µm (250 µm increments) |
Right DCN | 2,155 µm | -1325 µm | 4,750 µm, 4,550 µm |
Table 1: Stereotaxic coordinates for rAAV injections into IC and DCN. All coordinates are relative to lambda in µm. Z coordinates are measured from the dorsal surface of the skull at lambda.
We have found that CRACM is a powerful technique for identifying and characterizing long range synaptic inputs to neurons in the mouse IC. Following the protocol detailed here, we achieved robust transfection of neurons in the DCN and IC as well as reliable axonal trafficking of Chronos and ChrimsonR to synaptic terminals in the IC. Additionally, we demonstrated that this technique enables the measurement and analysis of postsynaptic events, including PSP amplitude, halfwidth, decay time, and receptor pharmacology. Our experience suggests that this approach can be readily adapted to perform functional circuit mapping experiments throughout the auditory brainstem and beyond.
Overall, the specificity of optogenetic circuit mapping provides a distinct advantage over electrical stimulation of axons. Viral transfections provide the ability to spatially and molecularly restrict the expression of channelrhodopsins to a targeted population of presynaptic neurons. In contrast, electrical stimulation cannot differentiate between axons originating from different presynaptic nuclei when those axons are intermingled, as is the case in most brain regions. Electrical stimulation can also initiate both orthodromic and antidromic spikes, further complicating matters when a distal stimulation site contains axons originating from neurons located near the recording site.
To ensure stable expression and good axonal trafficking of a channelrhodopsin, choosing the right viral vector and serotype is paramount. We found that stable expression of Chronos in IC neurons was achieved with a serotype 1 rAAV including a Chronos or ChrimsonR construct combined with a woodchuck hepatitis posttranscriptional regulatory element (WPRE) and bovine growth hormone (BGH) polyadenylation signal. rAAV serotype 5 failed to produce functional opsins in the IC, but was functional in the DCN (data not shown). The rigorous validation of injection coordinates for every experiment and ensuring that opsin expression is restricted to the targeted brain region is similarly important. A meaningful identification of inputs is only possible if expression of the opsin is carefully checked and documented for every experiment.
The rAAV1.ChrimsonR construct used in the above protocol yielded stable expression and good axonal trafficking of the protein, even in long range projections from the DCN to the IC (Figure 3). This makes ChrimsonR a suitable opsin for (long-range) circuit mapping. A red-shifted opsin like ChrimsonR can be useful if the experimental parameters require light penetration deep into the tissue, but the experimenter must be aware that all currently available red-shifted opsins show some cross-activation with blue light. Although some studies have argued that ChrimsonR and Chronos may be separately activated6,14,16, our data suggest that great care must be taken with this approach. A recent report details additional methods that should be used if attempting to separate red-shifted opsins from Chronos13. Therefore, when using ChrimsonR and Chronos in two color CRACM experiments, carefully designed control experiments need to be executed to ensure clear separation of blue and red-shifted opsin activation.
The authors have nothing to disclose.
This work was supported by a Deutsche Forschungsgemeinschaft Research Fellowship (GO 3060/1-1, project number 401540516, to DG) and National Institutes of Health grant R56 DC016880 (MTR).
AAV1.Syn.ChrimsonR-tdTomato.WPRE.bGH | Addgene | 59171-AAV1 | |
AAV1.Syn.Chronos-GFP.WPRE.bGH | Addgene | 59170-AAV1 | |
Ai14 reporter mice (B6.Cg-Gt(ROSA)26Sortm14(CAG-tdTomato)Hze/J) | Jackson Laboratory | stock #007914 | |
Amber (590nm) LUXEON Rebel LED | Luxeon Star LEDs | SP-01-A8 | |
Blue (470nm) LUXEON Rebel LED | Luxeon Star LEDs | SP-01-B4 | |
Carproject (carprofen) | Henry Schein Animal Health | 59149 | |
Drummond glas capillaries | Drummond Scientific Company | 3-000-203-G/X | |
Drummond Nanoject 3 | Drummond Scientific Company | 3-300-207 | |
Electrode beveler | Sutter Instrument | FG-BV10-D | |
Ethilon 6-0 (0.8 metric) nylon sutures | Ethicon | local pharmacy | |
Fixed stage microscope | any | n/a | |
Gas anesthesia head holder | David Kopf Instruments | 933-B | |
General surgery tools | Fine Science Tools | N/A | |
Golden A5 pet clipper | Oster | 078005-010-003 | |
Heating pad | Custom build | N/A | |
Hooded induction chamber w/ vacuum system | Patterson Scientific | 78917760 | |
Hot bead sterilizer Steri 250 | Inotech | IS-250 | |
Iodine solution 10% | MedChoice | local pharmacy | |
Isoflurane vaporizer | Patterson Scientific | 07-8703592 | |
Lidocain topical jelly 2% | Akorn | local pharmacy | |
Micro motor drill 1050 | Henry Schein Animal Health | 7094351 | |
Micro motor drill bits 0.5 mm | Fine Science Tools | 19007-05 | |
Motorized Micromanipulator | Sutter Instrument | MP-285/R | |
Ophthalmic ointment Artificial Tears | Akorn | local pharmacy | |
P-1000 electrode puller | Sutter Instrument | P-1000 | |
Patch clamp amplifier incl data acquisition software | any | n/a | |
Portable anethesia machine | Patterson Scientific | 07-8914724 | |
Small animal steroetaxic frame | David Kopf Instruments | 930-B | |
Standard chemicals | local vendors | N/A | |
standard imaging solutions | |||
Sterile towel drapes | Dynarex | 4410 | |
Surgical marker | Fine Science Tools | 18000-30 | |
Temperature controller | Custom build | N/A | |
Vibratome | any | n/a | |
VIP-IRES-Cre mice (Viptm1(cre)Zjh/J) | Jackson Laboratory | stock #010908 | |
Water bath | any | n/a |