Here we describe an in vitro live-imaging method to visualize intracellular transport of organelles and trafficking of plasma membrane proteins in murine astrocytes. This protocol also presents an image analysis methodology to determine cargo transport itineraries and kinetics.
Astrocytes are among the most abundant cell types in the adult brain, where they play key roles in a multiplicity of functions. As a central player in brain homeostasis, astrocytes supply neurons with vital metabolites and buffer extracellular water, ions, and glutamate. An integral component of the “tri-partite” synapse, astrocytes are also critical in the formation, pruning, maintenance, and modulation of synapses. To enable these highly interactive functions, astrocytes communicate among themselves and with other glial cells, neurons, the brain vasculature, and the extracellular environment through a multitude of specialized membrane proteins that include cell adhesion molecules, aquaporins, ion channels, neurotransmitter transporters, and gap junction molecules. To support this dynamic flux, astrocytes, like neurons, rely on tightly coordinated and efficient intracellular transport. Unlike neurons, where intracellular trafficking has been extensively delineated, microtubule-based transport in astrocytes has been less studied. Nonetheless, exo- and endocytic trafficking of cell membrane proteins and intracellular organelle transport orchestrates astrocytes’ normal biology, and these processes are often affected in disease or in response to injury. Here we present a straightforward protocol to culture high quality murine astrocytes, to fluorescently label astrocytic proteins and organelles of interest, and to record their intracellular transport dynamics using time-lapse confocal microscopy. We also demonstrate how to extract and quantify relevant transport parameters from the acquired movies using available image analysis software (i.e., ImageJ/FIJI) plugins.
Astrocytes are the most abundant cells in the adult central nervous system, where they perform unique developmental and homeostatic functions1. Astrocytes modulate synaptic development through direct contact with pre- and postsynaptic terminals as part of the tri-partite synapse, which contains neurotransmitter receptors, transporters, and cell adhesion molecules that facilitate synapse formation and neuron-astrocyte communication2. In addition, astrocytes actively control synaptic transmission and prevent neuronal excitotoxicity by rapidly removing excitatory neurotransmitters from the synaptic cleft, recycling neurotransmitters, and participating in synaptic pruning3,4,5,6. To enable these highly interactive functions, astrocytes communicate among themselves, with other glial cells, and with neurons through specialized membrane proteins, including cell adhesion molecules, aquaporins, ion channels, neurotransmitter transporters, and gap junction molecules. Astrocytes actively change the surface levels of these proteins in response to fluctuations in their intra- and extracellular environment7. Furthermore, changes in the levels and distribution of mitochondria, lipid droplets, and degradative and recycling organelles modulate energy supply, metabolite availability, and cellular clearing processes that are essential for astrocyte function and survival.
The dynamic changes in membrane protein and organelle trafficking and positioning in astrocytes are facilitated by the concerted function of motor proteins and adaptors that promote cargo motility8,9. Similarly, surface levels of membrane proteins are modulated through internalization and recycling events10. These cargos are transported via an intricate network of actin, microtubules, and possibly intermediate filaments tracks8. Studies based on immunofluorescence staining of end-binding protein 1 (EB1), which accumulates at the growing microtubule plus ends, suggest that in astrocytes bundles of microtubules radiate out from the perinucleus and extend their plus end towards the periphery11. However, a comprehensive examination of the organization and polarity of microtubules and other cytoskeletal elements using live-cell imaging is still lacking. While many of the mechanisms underlying the dynamics of organelles and membrane proteins have been extensively studied in neurons and other cell types, cargo motility in astrocytes is less well understood. Most of our current knowledge about changes in protein and organelle distribution in astrocytes is based on traditional antibody-based labeling of fixed preparation, which precludes precise spatial and temporal examination of cargo dynamics7,12.
Here, we describe a method to label membrane proteins and organelles for live imaging in high purity primary mouse astrocyte cultures. Using this protocol, we provide examples in which we track the dynamic localization of green fluorescent protein (GFP)-tagged membrane proteins in transfected astrocytes, including the gap junction protein connexin 43 (Cx43-GFP) and the excitatory amino acid transporter 1 (EAAT1-GFP). We also describe the use of a fluorescent acidotropic probe to visualize acidic organelles and follow their trafficking dynamics in live astrocytes. Finally, we demonstrate how to analyze the time-lapse data to extract and evaluate transport parameters for individual cargos.
All animal procedures were performed with the approval of the University of North Carolina at Chapel Hill Animal Care and Use Committee (IACUC).
1. Brain dissection and culture of primary mouse astrocytes
NOTE: The following protocol was adapted from published methods, which follows the original procedure developed by McCarthy and deVellis13,14,15. Mixed cell cultures of McCarthy/deVellis (MD) astrocytes are prepared from postnatal day 2−4 (P2−P4) mouse cortices, treated with an anti-mitotic factor, and purified to yield the final enriched astrocyte culture. Four cortices from mouse pups of either sex are sufficient to generate one T75 tissue culture flask culture.
2. Purification and maintenance of astrocyte cultures
NOTE: Perform all media changes under aseptic conditions in a laminar flow hood using sterile filtered (0.22 µm filter membrane) astrocyte media warmed to 37 °C.
3. Transfection of fluorescently tagged plasmids
4. Labeling of late endosomes/lysosomes using fluorescent probes
NOTE: Some cargos can be labeled using fluorescent dyes with high affinity for cargo-specific proteins. The following example permits the labelling of late endosomes/lysosomes with a fluorescent acidotropic probe.
5. Image acquisition using a time-lapse imaging system
NOTE: Time-lapse live imaging should be done using a fluorescence microscope equipped with a high-speed camera, definite focus, incubation chamber, and a 40x oil objective with a high numeric aperture (e.g., Plan-Apochromat 1.4NA). A variety of acquisition software is available for time-lapse imaging. Selection of the microscopy system and acquisition software should be based on their availability and suitability for the goals of the particular study. Some general guidelines are provided below.
6. Image analysis
NOTE: Image analysis was performed using the KymoToolBox plugin for ImageJ/Fiji16. Detailed step-by-step written instructions are available online17. The following abbreviated steps should be sufficient to create the kymographs and extract the particle transport parameters.
The protocol for establishing primary mouse MD astrocytes outlined above should yield reproducible, high quality cultures. Although cultures initially contain a mix of astrocytes, fibroblasts, and other glial cells, including microglia and oligodendrocytes (Figure 1Bi,Biv; red arrowheads), the addition of AraC to the mixed culture between DIV5-DIV7 minimizes the proliferation of these contaminant cells. The combined AraC treatment and shaking-based purification strategy enriches the purity of the astrocyte cultures (Figure 1Bii) over traditional protocols that only include the purification steps (Figure 1Bv; blue arrowheads)13. The expected morphology and composition (assessed by GFAP and 4',6-diamidino-2-phenylindole [DAPI] staining) of the purified astrocyte cultures treated with AraC or left untreated is shown in Figure 1Biii,Bvi. Quantification of the percentage of the GFAP+ cells per field of view (ratio of number of cells with GFAP staining to total number of cells identified by DAPI staining) shows an increase of over 27% in purity with AraC supplementation (Figure 1C). This high-purity mouse astrocyte culture is suitable for evaluation of RNA and protein expression, cell morphology, and other functional assays.
We used lipofection-based transfection to express GFP-tagged versions of the gap junction protein Cx43 and the EAAT1 transporter in murine astrocytes. This methodology allows transient expression of proteins at levels that are optimal for live cell imaging without causing toxicity or affecting astrocyte viability (Figure 2A,E). Similarly, the use of a fluorescent probe permitted rapid and efficient labelling of acidic endo-lysosomal organelles (Figure 2I) to track their dynamics in astrocytes.
Figure 2 shows representative results of the analyses of cargo dynamics in astrocytes transiently transfected with EAAT1-GFP, Cx43-GFP, or labeled with a selective dye that recognizes acidic endolysosomal vesicles. Each of these cargos appeared as a fluorescent punctum decorating the perinuclear region, cytosol, and processes of astrocytes (Figure 2A,E,I, left panels). The time-lapse data was used to generate kymographs that track cargo motion in time and space (Figure 2A,E,I, right panels). In these kymographs, anterograde and retrograde movement of the indicated cargo is represented by trajectories with negative (green lines) and positive (red lines) slopes, respectively. Stationary vesicles are shown as vertical trajectories (blue lines). Kymograph analysis revealed that the three types of cargo analyzed undergo bidirectional transport with occasional fast, processive runs in both directions. Furthermore, quantification of the flux of a cargo through an area of the astrocyte (red box) revealed differences in the percentage of motile particles among cargos. For example, while 70% of EAAT1-GFP puncta are stationary (Figure 2B), less than 20% of Cx43-GFP (Figure 2F) and 45% of probe-labeled endolysosomal cargos (Figure 2J) are non-motile. These differences in motility among cargos are likely representative of their normal, baseline motility in the region of the astrocyte where the movies were acquired.
The precise mapping of the change in X-Y position along the full time scale for each particle obtained from the kymograph can also be used to evaluate other motion parameters, such as cargo velocity (Figure 2C,G,K) and run length (distance traveled) (Figure 2D,H,L). Motion parameters can be further analyzed for individual cargos to determine changes in directionality of movement (anterograde vs retrograde motion) as well as reversals in particle direction of motion, number of pauses, etc. The results from these types of analyses can provide meaningful quantitative information regarding changes in the cellular distribution of organelles and membrane proteins in astrocytes under basal or abnormal conditions in the intra- and extracellular environment.
Figure 1: Establishment of primary mouse astrocyte cultures.
(A) Steps required for dissection of P2−P4 mouse brains. (B) (i,iv) Brightfield images of mixed glial cultures treated (i) and non-treated (iv) with AraC. Red arrowheads indicate contaminant microglia. (ii,v) Images of purified astrocyte cultures treated (ii) and non-treated (v) with AraC. Blue arrowheads indicate contaminant oligodendrocytes. (iii,vi) Confocal images of purified astrocyte cultures treated (iii) and non-treated (vi) with AraC. Green shows GFAP staining and DAPI (blue) labels all nuclei. (C) Percentage of GFAP-positive cells. Data represents mean ± SEM. ***p < 0.001, unpaired t-test. Please click here to view a larger version of this figure.
Figure 2: Quantitative analyses of cargo dynamics in astrocytes.
(A,E,I) Left panels: Astrocytes expressing EAAT1-GFP (A), Cx43-GFP (E) or treated with a probe that labels late endosomes and lysosomes (I). Red boxes indicate regions used to analyze particle dynamics. Right panels: Original and color-coded kymographs showing trajectories for the indicated cargos. Red lines represent retrograde-moving cargos, green lines anterograde-moving cargos, and blue lines non-motile cargos. (B,F,J) Percentage of stationary and motile particles. (C,G,K) Quantification of anterograde and retrograde velocity and (D,H,L) run length. Data represents mean ± SEM. Please click here to view a larger version of this figure.
Here, we describe an experimental approach to express, visualize, and track fluorescently tagged organelles and membrane proteins of interest using time-lapse video microscopy in high-purity primary mouse cortical MD astrocytes. We also outline a methodology for measuring particle dynamics. Direct visualization of protein and organelle dynamics in primary astrocytes provides a powerful tool to study the regulation of intracellular transport in these cells in vitro.
The methodology for establishing mouse MD astrocyte cultures described above combines steps from other published protocols13,14,15, which results in both a simpler method and in higher purity and quality cultures. The combination of AraC15 treatment and shaking-based purification13,14 can yield astrocyte cultures with a purity as high as 98% (assessed by the ratio of GFAP+ cells total cells), which in our example results in a 27% increase in purity over cultures subjected to the purification steps only (Figure 1B,C). The high purity cultures of mouse astrocytes obtained with this method is similar to the values reported for rat astrocyte cultures (assessed by enzymatic assays and electron microscopy) by McCarthy and deVellis14. However, the McCarthy/deVellis method, which does not include AraC treatment, requires a longer shaking step (15−18 h) and two additional rounds of purification14.
In our example, we show that this protocol is sufficiently sensitive to capture differences in motility among various membrane proteins and organelles in astrocytes, which are likely representative of their individual intracellular itineraries and cellular function. Although our example demonstrates the utility of this protocol at basal conditions, this methodology can be easily adapted to measure transport parameters within a broad range of research questions. For example, similar protocols with minor modifications could be used to characterize transport events in astrocytes in vitro in response to intra- or extracellular environment, such as cellular damage, toxicity, pathogenic mutations, synaptic activity (in mixed cultures of neurons and astrocytes), etc. Likewise, co-expression and visualization of multiple cargos or organelles, each individually tagged with different fluorophores, can also be used to assess dynamic changes in co-localization and complex formation, transient interactions between organelles, and endocytic and membrane recycling transport events.
The success of the methodology presented here primarily relies on the ability to obtain high-quality astrocyte cultures and in the efficient labeling of cargo(s) of interest. When utilizing this procedure for live imaging, it is important to closely monitor fluorescent expression to determine the optimal post-transfection incubation time. On average, we found that for the cargos analyzed a 24-h incubation period results in good signal intensity for live imaging acquisition. Prolonged incubation of transfected astrocytes can result in high expression of fluorescently tagged proteins, which can induce protein aggregation, thus changing cargo localization and dynamics, and diminishing the health of the cultures. Astrocytes are very vulnerable to physical damage and changes in the culture environment, which can lead to induction of transcriptional and cellular responses, including reactivity. Therefore, it is critical to reduce the time intervals between washing steps, and to minimize exposure of the cultures to air and to significant changes in temperature or light intensity over the incubation and acquisition periods.
In summary, the methods presented here can be used to evaluate and quantify dynamic changes in protein and organelle localization in astrocytes. They provide valuable tools that permit the examination of changes in astrocytic responses under physiological and pathological conditions.
The authors have nothing to disclose.
DNL was supported by the University of North Carolina at Chapel Hill (UNC) School of Medicine as a Simmons Scholar. TWR was supported by UNC PREP Grant R25 GM089569. Work using the UNC Neuroscience Center Microscopy Core Facility was supported, in part, by funding from the NIH-NINDS Neuroscience Center Support Grant P30 NS045892 and the NIH-NICHD Intellectual and Developmental Disabilities Research Center Support Grant U54 HD079124.
2.5% Trypsin (10x) | Gibco | 15090-046 | |
Benchtop Centrifuge | Thermo Scientific | 75-203-637 | Sorvall ST8 Centrifuge |
Cell Culture Grade Water | Gen Clone | 25-511 | |
Cell Culture Microscope | Zeiss | WSN-AXIOVERT A1 | Vert.A1 inverted scope, Inverted tissue culture microscope with fluorescent capabilities |
Cytosine Arabinoside | Sigma | C1768-100MG | (AraC) Dissolve lyophilized powder in sterile cell culture grade water to make a 10mM stock, aliquot and freeze for long term storage |
DAPI | Sigma | D9542-5MG | Dissolve lyophilized powder in deionized water to a maximum concentration of 20 mg/ml, heat or sonicate as necessary. Use at 300 nM for counterstaining. |
Dissecting Microscope | Zeiss | Stemi 305 | |
Dissecting Scissors | F.S.T | 14558-09 | |
Dulbecco's Modified Eagle Medium | Gen Clone | 25-500 | |
Fetal Bovine Serum | Gemini | 100-106 | Heat-Inactivated |
FIJI (Fiji is Just Image J) | NIH | Version 1.52i | |
Fine Tip Tweezers | F.S.T | 11254-20 | Style #5 |
Fluorescence light source | Excelitas | 012-63000 | X-Cite 120Q |
GFAP antibody | Cell Signaling | 3670S | GFAP (GA5) mouse monoclonal antibody |
Glass Bottom Dishes | Mattek corporation | P35G-1.5-14-C | 35 mm Dish | No. 1.5 Coverslip | 14 mm Glass Diameter | Uncoated |
Graefe Forceps | F.S.T | 11054-10 | Graefe Iris Forceps with curved tips |
Green fluorescent dye that stains acidic compartments (late endosomes and lysosomes) | Life Technologies | L7526 | LysoTracker Green DND 26. Pre-dissolved in DMSOS to a 1mM stock solution. Dilute to the final working concentration in the growth medium or buffer of choice. |
Hank's Balanced Salt Solution (10x) | Gibco | 14065-056 | Magnesium and calcium free |
Imaging Media | Life Technologies | A14291DJ | Live Cell Imaging Solution |
Inverted Confocal Microscope | Zeiss | LSM 780 | |
KymoToolBox | https://github.com/fabricecordelieres/IJ_KymoToolBox | ||
Lipofection Enhancer Reagent | Life Technologies | 11514015 | Plus Reagent |
Lipofection Reagent | Life Technologies | 15338100 | Lipofectamine LTX reagent |
Orbital shaking incubator | New Brunswick Scientific | 8261-30-1008 | Innova 4230 , orbital shaking incubator with temperature and speed control |
Penicillin/Strepomycin solution (100x) | Gen Clone | 25-512 | |
Phosphate Buffered Saline (10x) | Gen Clone | 25-507x | |
Poly-D-Lysine Hydrobromide | Sigma | P7405 | Dissolve in Tris buffer, pH 8.5, at 1mg/mL. Freeze for long term storage. Avoid cycles of freezing and thawing |
Reduced serum medium | Gibco | 31985-062 | OPTI-MEM |
Tissue Culture Flasks | Olympus Plastics | 25-209 | 75 cm^2. 100% angled neck access, 0.22um hydrophobic vented filter cap |
Tissue culture incubator | Thermo Scientific | 51030285 | HERAcell VIOS 160i, tissue culture incubator with temperature, humidity, and CO2 control |
Tris-Base | Sigma | T1503 | 8.402 g dissolved to one liter in water with 4.829 g Tris HCl to make 0.1 M Tris buffer, pH 8.5 |
Tris-HCl | Sigma | T3253 | 4.829 g dissolved to one liter in water with 8.402 g Tris Base to make 0.1 M Tris buffer, pH 8.5 |
Trypsin-EDTA (0.25%), phenol red | Gibco | 25200072 | |
Vacuum-Driven Filter Systems | Olympus Plastics | 25-227 | 500 ml, PES membrane, 0.22 µm |
Vannas scissors straight | Roboz | RS-5620 |