We describe a method for the characterization of proton-driven membrane transporters in membrane vesicle preparations produced by heterologous expression in E. coli and lysis of cells using a French press.
Several methods have been developed to functionally characterize novel membrane transporters. Polyamines are ubiquitous in all organisms, but polyamine exchangers in plants have not been identified. Here, we outline a method to characterize polyamine antiporters using membrane vesicles generated from the lysis of Escherichia coli cells heterologously expressing a plant antiporter. First, we heterologously expressed AtBAT1 in an E. coli strain deficient in polyamine and arginine exchange transporters. Vesicles were produced using a French press, purified by ultracentrifugation and utilized in a membrane filtration assay of labeled substrates to demonstrate the substrate specificity of the transporter. These assays demonstrated that AtBAT1 is a proton-mediated transporter of arginine, γ-aminobutyric acid (GABA), putrescine and spermidine. The mutant strain that was developed for the assay of AtBAT1 may be useful for the functional analysis of other families of plant and animal polyamine exchangers. We also hypothesize that this approach can be used to characterize many other types of antiporters, as long as these proteins can be expressed in the bacterial cell membrane. E. coli is a good system for the characterization of novel transporters, since there are multiple methods that can be employed to mutagenize native transporters.
Proteins involved in the trafficking of metabolites constitute an essential level of physiological regulation, but the vast majority of plant membrane transporters have not yet been functionally characterized. Several strategies have been implemented to characterize novel transport proteins. Heterologous expression in model organisms such as E. coli and eukaryotic cells such as yeast, Xenopus oocytes, mammalian cells, insect cells and plant cells have all been used to determine their transport activity1. Eukaryotic cells are favored for the expression of eukaryotic proteins, because the basic cellular composition, signal transducing pathways, transcription and translation machineries are compatible with the native conditions.
Yeast has been an important model organism for the characterization of novel transport proteins in plants. The first plant transport protein that was successfully expressed in yeast (Saccharomyces pombe) was the hexose transporter HUP1 from Chlorella2. Since then, many plant transport proteins have been functionally characterized using a yeast expression system. These include, plant sugar transporters (SUC1 and SUC23, VfSUT1 and VfSTP14) and the auxin transporters (AUX1 and PIN5). Disadvantages of utilizing yeast to express plant proteins can include impaired activity of plastid-localized proteins because yeast lacks this organelle, mistargeting6, and formation of misfolded aggregates and activation of stress responses in yeast due to overexpression of membrane proteins7,8,9.
Heterologous expression of transport proteins in Xenopus oocytes have been widely used for the electrophysiological characterization of transporters10. The first plant transport proteins characterized using heterologous expression in Xenopus oocytes were the Arabidopsis potassium channel KAT110 and the Arabidopsis hexose transporter STP111. Since then, Xenopus oocytes have been employed to characterize many plant transport proteins such as plasma membrane transporters12, vacuolar sucrose transporter SUT413 and vacuolar malate transporter ALMT914. An important limitation of Xenopus oocytes for transport assays is that the concentration of intracellular metabolites cannot be manipulated1. Moreover, professional knowledge is required to prepare Xenopus oocytes and the variability of the oocyte batches is difficult to control.
Heterologous expression in the model organism E. coli is an ideal system in terms of characterization of novel plant transport proteins. With a fully sequenced genome15, the molecular and physiological characteristics of E. coli are well known. Molecular tools and techniques are well established16. In addition, different expression vectors, non-pathogenic strains and mutants are available17,18,19. Furthermore, E. coli has a high growth rate and can be easily grown under laboratory conditions. Many proteins can be easily expressed and purified at high amounts in E. coli9. When proteins cannot be assayed directly in cellular systems, reconstitution of proteins into liposomes has also been a successful, albeit challenging innovation for the characterization of purified membrane proteins. Functional characterization of the plant mitochondrial transport proteins including solute transporters such as phosphate transporters in soybean, maize, rice and Arabidopsis, dicarboxylate-tricarboxylate carrier in Arabidopsis have been accomplished by using this model system20,21. However, recombinant proteins of the tomato protein SICAT9 were found to be nonfunctional in reconstitution experiments, and other members of the CAT transporter family were found to be nonfunctional in Xenopus oocyte assays22. Thus, additional molecular tools are needed for the characterization of membrane transporters.
Five polyamine transport systems are found in E. coli23. They include two ABC transporters mediating the uptake of spermidine and putrescine, a putrescine/ornithine exchanger, a cadaverine/lysine exchanger, a spermidine exporter and a putrescine importer. The putrescine exchanger PotE was originally characterized using a vesicle assay, where inside out vesicles were prepared by lysing cells with a French press and measuring the uptake of radiolabeled putrescine into the vesicles in exchange for ornithine24. Vesicle assays were also used to characterize a calcium transporter, which mediated the transport of calcium in response to a proton gradient25. These experiments prompted us to develop a strategy for the characterization of other polyamine exchangers. We first created a strain of E. coli deficient in PotE and CadB exchangers. Here, we demonstrate the functional characterization of a plant polyamine antiporter by heterlogous expression in the modified E. coli strain, generation of membrane vesicles using a French press, and radiolabeled assays.
1. Generation of the E. coli Double Knock Out Mutant with P1 Transduction
2. Expression of the Target Gene (AtBAT1) in E. coli Mutant
3. Generation of Inside-out Membrane Vesicles
4. Western Blot and Orientation of Transporter Assay
5. Transport Assay
The major steps in this protocol are summarized pictorially in Figure 1. Briefly, E. coli cells deficient in all polyamine exchangers and expressing AtBAT1 are cultured, centrifuged, washed with a buffer and subjected to cell lysis using a French press. Lysis tends to produce vesicles that are mostly inside-out and trap the buffer outside the cells. Cell debris is removed by centrifugation, and a second ultracentifugation step is used to collect a membrane pellet. The membrane pellet is resuspended in Tris-Maleate buffer pH 5.2 and stored at -80 °C. Transport assays are done at 12 °C, which was found to be optimal for maintaining membrane stability. Assays are initiated by the addition of radiolabeled substrate and a shift in the pH of the buffer suspension of vesicles to pH 8.0. After 1 min, ice-cold assay buffer with unlabeled substrates is added to stop the uptake of the radiolabel into the vesicles. Radiolabelled vesicles are trapped by filtration through nitrocellulose membranes. Membranes are transferred to scintillation vials and radiolabel on the membranes is determined by liquid scintillation counting.
A western blot is used to verify that AtBAT1 is translocated to vesicles (Figure 2). Probing the blot with an Anti-His C-terminal antibody revealed a fusion construct protein of approximately 72.3 kDa (Figure 2, Lane 2). Digestion of the vesicles prior to SDS-PAGE resulted in a dimunition, but not a complete loss of the probe signal (Figure 2, lane 3). The decrease in the probe signal as a consequence of carboxypeptidase A suggests that most of the C-terminal residues are on the outside of the vesicles.
In this assay system, vesicles are suspended in a buffer at pH 5.2 so that the pH inside the vesicles equilibrates with the buffer. Transport of the radiolabeled substrate into the vesicles at pH 5.2 is initiated by suspending the vesicles in a pH 8.0 buffer, thus creating a pH gradient of pH 2.8 across the membrane. At 12 °C, uptake of radiolabeled spermidine by the vesicles was highest at 1 min, and remained linear over 3 min (Figure 3A). Therefore, the incubation time for the transport assay was fixed at 1 min. To account for non-specific binding of radiolabel, the vesicles were incubated at 0 °C in the presence of radiolabeled substrate for one minute, and these counts were subtracted from uptake of ladiolabel at higher temperatures.
Figure 3B shows the uptake of radiolabeled spermidine into the vesicles after one minute. There was no net uptake of isotope by membrane vesicles that were prepared and stored at pH 8.0, as there was no proton gradient across the vesicle membrane. To demonstrate the effect of dissipation of the artificial proton gradient, the membrane vesicles were incubated in pH 8.0 buffer for 10 min prior to the addition of labelled substrate25. Under these conditions, a minimal uptake of radiolabeled substrate was shown. Uptake of radiolabeled spermidine was also minimal in vesicles prepared with E. coli cells deficient in the polyamine exchangers CadB and PotE. Taken together, these results indicate that the proton driven uptake of spermidine was due to the BAT1 protein (Figure 3A,B).
To determine the substrate specificity of the protein, Km values were calculated by measuring the uptake of radiolabeled substrate at 10, 25, 50, 100, 250 and 500 μM concentrations. The Km for spermidine, putrescine and arginine were 55 ± 12 μM, 85 ± 20 μM and 1.4 ± 0.5 mM, respectively, indicating that this protein is a high affinity polyamine and arginine exchanger (Figure 4).
Affinity of the transporter for a particular substrate can also be determined indirectly by using competition assays. Here, we have utilized two methods to evaluate the competition between two substrates. In the first method, the uptake of 50 μM radiolabeled spermidine was measured in the presence of increasing concentrations of the nonlabelled competing substrate (Figure 5A). In the second method, the apparent Km for spermidine was calculated by measuring the uptake of increasing concentrations of radiolabeled spermidine in the presence of 100 μM nonlabelled competing substrate (Figure 5B). Competition assays revealed that GABA is a competitive inhibitor of spermidine with a Km,app of 164 ± 15 μM (Figure 5A,B). Furthermore, measuring the uptake of 50 μM radiolabeled spermidine in the presence of varying concentrations of different amino acids revealed that AtBAT1 is also capable of transporting glutamate and alanine at mM concentrations (Figure 6).
Figure 1: Schematic representation of the method. (A) Schematic representation outlining key steps in the preparation and purification of membrane vesicles from E. coli. (B) Schematic representation outlining key steps in transport assay of membrane vesicle preparations using radiolabeled substrates. Please click here to view a larger version of this figure.
Figure 2: Western blot showing expression of AtBAt1 in purified vesicles. Bands were visualized using horseradish peroxidase conjugated anti-His (C-term)-HRP antibody. Lane 1, Prestained protein ladder. Lane 2, Purified vesicles expressing AtBAT1.1 showing a band of the expected size of the fusion protein. Lane 3, purified vesicles expressing AtBAT1.1 were pretreated with carboxypeptidase A prior to SDS electrophoresis and western blotting. Equivalent amounts of vesicles (protein) were added to each lane. Decreased staining indicates that the C-terminal of the protein in most vesicles is degraded by by protease digestion. Please click here to view a larger version of this figure.
Figure 3: Transport activity of vesicles showing the effect of BAT1 protein expression and the importance of a pH gradient. (A) Time dependent uptake of 3H labeled spermidine in vesicles expressing BAT1 with an internal pH of 5.2 and introduced to a buffer at pH 8.0. In the control assay, the vesicles were added to the assay buffer at pH 8.0, 10 min prior to the addition of 3H labeled spermidine to enable dissipation of the proton gradient. Then uptake of radiolabel into the vesicles was assessed over a 1 min interval. (B) Uptake of 3H labeled spermidine in the presence of a proton gradient (internal pH of 5.2), in the absence of a proton gradient (internal pH of 8), in vesicles added to the assay solution 10 min prior to the addition of radiolabeled spermidine and in vesicles made from E. coli mutant cells not expressing BAT1. Uptake into vesicles was monitored for 1 min. All values are presented as mean ± SE of five replicates. Data analysis was performed using a student's t-test and * indicates a significant difference from the control (p value < 0.05). Please click here to view a larger version of this figure.
Figure 4: In vitro assays of polyamine and arginine transport activity of BAT1. (A) The Km values for spermidine and putrescine uptake are 55 ± 12 μM and 85 ± 32 μM respectively. (B)The Km for arginine uptake is 1.4 ± 0.5 mM. All values are presented as mean ± SE of five replicates. Please click here to view a larger version of this figure.
Figure 5: GABA is a competitive inhibitor of Spermidine transport by BAT1. (A) Uptake of 3H labeled spermidine by vesicles expressing AtBAT1.1 was significantly reduced in the presence of 100 μM or 500 μM GABA. (B) Apparent Km for spermidine uptake by BAT1.1 was increased to 164 ± 20 μM in the presence of 100 μM GABA. All values are presented as mean ± SE of five replicates. Data analysis was performed using a student's t-test and * indicates a significant difference from the control (p value < 0.05). Please click here to view a larger version of this figure.
Figure 6: Glutamate and alanine are competitive inhibitors of spermidine transportby BAT1. Spermidine uptake was significantly reduced in the presence of 1 mM non-labeled glutamate and 1.5 mM non-labeled alanine. All values are presented as mean ± SE of five replicates. Data analysis was performed using a student's t-test and * indicates a significant difference from the control (p value < 0.05). Please click here to view a larger version of this figure.
In the present study, we outline a method for the characterization of an antiporter by first expressing the protein in E. coli and then generating membrane vesicles, so that the heterologously-expressed protein can be assayed in a cell-free system. In addition to equipment found in most molecular biology labs, this strategy requires the use of a French press, an ultracentrifuge, and access to a facility to conduct radioisotope assays.
A basic requirement of this technique is that the heterologous protein is correctly targeted to the plasma membrane of E. coli. This strategy may also be useful for functional analysis of organellar transporters since the plastid ADP glucose transporter was successfully localized to the E. coli cell membrane and functionally characterized35. The vector (pBAD-DEST49) used in these experiments contains an N-terminal thioredoxin protein to increase the solubility of the translated product. N-terminal fusions of a small B. subtilus protein mystic, have been found to enable more efficient targeting of membrane transporters to the cytoplasmic membrane36. However, misfolding events, and the failure of the proteins to be properly integrated into the cytoplasmic membrane are potential problems that preclude the use of bacterial expression systems for many types of transporters1.
Membrane vesicles have also been used to characterize plant transporters37,38. As the vesicles lack the essential energy sources such as ATP and enzymes, the interference from active transporters and other metabolic activity is minimal. Thus, this system is ideal for the analysis of passive translocations such as metabolite exchangers. The everted membrane vesicles, in particular, can be applied to the characterization of exporters and antiporters since the composition of the internal solution can be manipulated by changing the composition of buffer 1. Furthermore, using French press or ultrasound sonication is fairly efficient in generating inside-out membrane vesicles from intact E. coli cells. 95% of the vesicles generated by ultrasound sonication or French press have everted membranes39,40. PotE, the E. coli antiporter of putrescine and ornithine, was the first polyamine antiporter that was characterized using inside-out membrane vesicles23. We used P1 transduction to create a specific mutant strain for the characterization of a polyamine antiporter, and this strain may be useful for the characterization of other animal, fungal or plant polyamine exchangers. We also envision that other E. coli strains with two or more gene deletions might be useful for the characterization of other plant and animal exchange transporters using membrane vesicles.
The most critical step in this protocol is the expression of the protein in the E. coli mutant system. An E. coli expression vector with an inducible promoter is utilized to promote tight, dose dependent regulation of the heterologous gene expression. The presence of N terminal and C terminal tags such as His-patch Thioredoxin, V5 epitope or 6xHis in the vector is useful for detection and purification of the protein. In addition, the presence of a thioredoxin fusion protein which is a component of the pBAD49 vector, can increase translation efficiency and, in some cases, solubility of eukaryotic proteins expressed in E. coli41. The different codon choices in Arabidopsis and E. coli could challenge protein expression in E. coli. It is known that codon optimization can impressively increase heterozygous proteins expression in E. coli42. In the vesicle assay, codon optimized AtBAT1.2 showed a higher exchange activity than non-codon optimized AtBAT1.1 in E. coli cells (data not shown), demonstrating that codon optimization was helpful to enhance the expression and function of heterologously expressed proteins in bacterial cells. The production of membrane vesicles by careful adjustment of the valve to maintain a slow even drip of lysed cells is also a key step in the procedure. After ultracentrifugation, we have found that resuspension of membrane vesicles in a Dounce homogenizer minimizes sample to sample variation between aliquots of membrane vesicles that are prepared and subsequently stored at -80 °C.
A limitation of E. coli expression systems is that they are incapable of post-translational modifications such as N-glycosylation or acetylation. Absence of these protein modifications might impact protein activity1. However, mutants capable of performing these modifications have been identified and can be used as a tool to express proteins that require such modifications43. The generation of sufficient amounts of the expressed protein could be a challenge due to unfolding and aggregation as inclusion bodies, failure of the protein to be properly integrated in to the cytoplasmic membrane, mistargeting and mis-regulation due to lack of post translational modifications.
A minor limitation of this technique is that it does not provide evidence for the natural orientation of the transporter. This can be accomplished by taking advantage of the N or C terminal tags and immunological methods. The accessibility of a particular terminus of the protein in vesicles can be achieved by the digestion of all accessible, and therefore, presumably external termini of the carrier, electrophoresis of the protein in the presence of sodium dodecyl sulfate, transfer to nitrocellulose filters and detection of the remaining, internal termini with antibodies40.
The authors have nothing to disclose.
Support for this project came from the BGSU Graduate College, and the BGSU Office of Sponsored Programs and Research.
2-mercaptoethanol | Sigma-Aldrich | M6250 | |
3H-putrescine | PerkinElmer | NET185001MC | |
3H-spermidine | PerkinElmer | NET522001MC | |
4-chloro-1-naphthol | Sigma-Aldrich | C8890 | |
14C arginine | Moravek Inc. | MC137 | |
Arginine | Sigma-Aldrich | A-5006 | |
Anti-His (C-term)-HRP antibody | ThermoFisher | R931-25 | Detects the C-terminal polyhistidine (6xHis) tag, requires the free carboxyl group for detection |
Arabinose | Sigma-Aldrich | A3256 | |
BCA protein assay kit | ThermoFisher | 23227 | Pierce BCA protein asay kit. |
Bromophenol blue | Bio-Rad | 161-0404 | |
Carboxypeptidase B | Sigma-Aldrich | C9584-1mg | |
Centrifuge | Sorvall | SS-34 fixed angle rotor and GA-6 fixed angle rotor | |
Dounce tissue grinder | LabGenome | 7777-7 | Corning 7777-7 pyrex homogenizer with pour spout. |
Ecoscint-H | National Diagnostics | LS275 | scintillation cocktail |
EDTA | Sigma-Aldrich | ||
Filtration manifold | Hoefer | FH225V | |
French Pressure Cell | Glen Mills | FA-080A120 | |
GABA | Sigma-Aldrich | A2129 | |
Glutamate | Sigma-Aldrich | G6904 | |
Glycerol | |||
GraphPad Prism software | http://www.graphpad.com/prism/Prism.htm | ||
Hydrogen peroxide | KROGER | ||
Potassium Chloride | J.T. Baker | 3040-01 | |
Liquid scintillation counter | Beckman | LS-6500 | |
Maleate | Sigma-Aldrich | M0375 | |
Nanodrop | ThermoFisher | ||
Nitrocellulose membrane filters | Merck Millipore | hawp02500 | 0.45 µM |
PCR clean up kit | Genscript | QuickClean II | |
Potassium Phosphate dibasic | ThermoFisher | P290-500 | |
putrescine | fluka | 32810 | |
Potassium Phosphate monobasic | J.T.Baker | 4008 | |
Spermidine | Sigma-aldrich | S2501 | |
Strains :E. coli ΔpotE740(del)::kan, ΔcadB2231::Tn10 | This manuscript | Available upon request. | Strain is deficient in the PotE and CadB polyamine exchangers. |
Tris-base | Research Products | T60040-1000 | |
Ultracentrifuge | Sorvall MTX 150 | 46960 | Thermo Fisher S150-AT fixed angle rotor |
Ultracentrifuge tubes | ThermoFisher | 45237 | Centrifuge tubes for S150-AT rotor |
Vector: pBAD-DEST49 | ThermoFisher | Gateway expression vector for E. coli |