Presynapse formation is a dynamic process including accumulation of synaptic proteins in proper order. In this method, presynapse formation is triggered by beads conjugated with a presynapse organizer protein on axonal sheets of “neuron ball” culture, so that accumulation of synaptic proteins is easy to be analyzed during presynapse formation.
During neuronal development, synapse formation is an important step to establish neural circuits. To form synapses, synaptic proteins must be supplied in appropriate order by transport from cell bodies and/or local translation in immature synapses. However, it is not fully understood how synaptic proteins accumulate in synapses in proper order. Here, we present a novel method to analyze presynaptic formation by using the combination of neuron ball culture with beads to induce presynapse formation. Neuron balls that is neuronal cell aggregates provide axonal sheets far from cell bodies and dendrites, so that weak fluorescent signals of presynapses can be detected by avoiding overwhelming signals of cell bodies. As beads to trigger presynapse formation, we use beads conjugated with leucine-rich repeat transmembrane neuronal 2 (LRRTM2), an excitatory presynaptic organizer. Using this method, we demonstrated that vesicular glutamate transporter 1 (vGlut1), a synaptic vesicle protein, accumulated in presynapses faster than Munc18-1, an active zone protein. Munc18-1 accumulated translation-dependently in presynapse even after removing cell bodies. This finding indicates the Munc18-1 accumulation by local translation in axons, not transport from cell bodies. In conclusion, this method is suitable to analyze accumulation of synaptic proteins in presynapses and source of synaptic proteins. As neuron ball culture is simple and it is not necessary to use special apparatus, this method could be applicable to other experimental platforms.
Synapse formation is one of critical steps during development of neural circuits1,2,3. Formation of synapses that are specialized compartments composed of pre- and post-synapses is a complex and multistep process involving appropriate recognition of axons and dendrites, formation of active zone and postsynaptic density, and proper alignment of ion channels and neurotransmitter receptors1,2. In each process, many kinds of synaptic proteins accumulate to these specialized compartments in proper timing by transporting synaptic proteins from cell bodies and/or by local translation in the compartments. These synaptic proteins are considered to be arranged in organized manner to form functional synapses. Dysfunction of some synaptic proteins involving synapse formation results in neurological diseases4,5. However, it remains unclear how synaptic proteins accumulate in proper timing.
To investigate how synaptic proteins accumulate in organized manner, it is necessary to examine accumulation of synaptic proteins in chronological order. Some reports demonstrated live imaging to observe synapse formation in dissociated culture of neurons6,7. However, it is time-consuming to find neurons which just start synapse formation under microscopy. To observe accumulation of synaptic proteins efficiently, synapse formation must start at the time when researchers want to induce the formation. The second challenge is to distinguish accumulation of synaptic proteins due to transport from cell bodies or local translation in synapses. For that purpose, translation level is necessary to be measured under the condition that does not allow transport of synaptic proteins from cell bodies.
We developed novel presynapse formation assay using combination of neuron ball culture with beads to induce presynapse formation8. Neuron ball culture is developed to examine axonal phenotype, due to the formation of axonal sheets surrounding cell bodies9,10. We used magnetic beads conjugated with leucine-rich repeat transmembrane neuronal 2 (LRRTM2) that is a presynaptic organizer to induce excitatory presynapses (Figure 1A)11,12,13. By using the LRRTM2 beads, presynapse formation start at the time when the beads are applied. This means that presynapse formation starts in thousands of axons of a neuron ball at same times, thus it allows to examine precise time course of accumulation of synaptic proteins efficiently. In addition, neuron ball culture is easy to block transport synaptic proteins from soma by removing cell bodies (Figure 1B)8. We have already confirmed that axons without cell bodies can survive and are healthy at least 4 h after removal of cell bodies. Thus, this protocol is suitable to investigate from where synaptic proteins are derived (cell body or axon), and how synaptic proteins accumulate in organized manner.
The experiments described in this manuscript were performed according to the guidelines outlined in the Institutional Animal Care and Use Committee of the Yokohama City University.
1. Preparation of neuron balls as hanging drop culture (Days in vitro (DIV) 0-3)
NOTE: The procedures described here for the preparation of neuron ball culture are based on the method previously reported by the Sasaki group with some modifications9,10. We also adopted several procedures from the Banker method for dissociated culture14.
2. Placing neuron balls on PLL-coated glass coverslips and culture maintenance (DIV 3-11)
NOTE: Before coating of glass coverslips with poly-L-lysine (PLL), washing the coverslips using detergent is important. Glass coverslips are sometimes not so clean for neuronal culture and uniform coating with PLL. Non-uniform PLL coating may result in uneven axonal extension of neuron balls.
3. Applying LRRTM2 beads on neuron ball culture with or without cell bodies (DIV 11-12)
NOTE: Before application of LRRTM2 beads on neuron ball culture, it is recommended to remove cell bodies. Therefore, prepare LRRTM2 beads at first, then remove the cell bodies and later apply LRRTM2 beads to culture as early as possible. Biotinylated LRRTM2 is provided by the Nogi’s group (Yokohama City University) as conditioned medium. They use an expression vector including biotin acceptor sequence and biotin ligase from E. coli (BirA)15,16 to attach biotin to LRRTM2, and the expression vector is transfected to Expi293F cells included in the Expi293 Expression System. The vector information is available in Supplementary Figure 1. Biotinylated LRRTM2-conjugated streptavidin beads reduced background of immunostaining greatly compared to LRRTM2-Fc –conjugated Protein A beads that are used for prototype LRRTM2 system8.
4. Immunostaining and microscopy
NOTE: Fix the cells for 4 h via incubation with LRRTM2 beads in the experimental conditions with and without cell bodies, as the axons tend gradually to die in absence of cell bodies after 4 h. In case of time course with LRRTM2 beads, fix the cells at the indicated specified time.
Here, we show representative results of accumulation of presynaptic proteins in LRRTM2-induced presynapses of axonal sheets of neuron ball culture. As presynaptic proteins, we analyzed the excitatory synaptic vesicle protein vGlut1 and the active zone protein Munc18-1. We also examined time course of accumulation of vGlut1 and Munc18-1 in presynapses, and obtained results indicating source of Munc18-1 in presynapses using axons removing cell bodies and a protein synthesis inhibitor. Recently, we have investigated a role of Fragile X mental retardation protein (FMRP) on accumulation of Munc18-1 in presynapses8. FMRP, which is a causative gene product of Fragile X syndrome (FXS), is a mRNA binding protein to suppress translation17,18,19. We also examined the involvement of FMRP in the Munc18-1 accumulation using FXS model mice which is deficient in Fmr1 gene encoding FMRP.
Application of LRRTM2-beads into neuron ball culture at DIV11 induced accumulation of Munc18-1 in presynapses of axons of neuron balls (Figure 2A). Even in axons which are removed cell bodies, accumulation of Munc18-1 was observed under the beads similar as axons of neuron balls with cell bodies (Figure 2B). In typical case, over 80% of beads after 4 h-incubation with neuron balls can induce accumulation of synaptic proteins in presynapses, judged by staining Munc18-1 and vGlut-1. Because axons are so crowded and overlapped near cell bodies (Figure 2Aa, Ba), more peripheral region of axonal sheets were measured where axons are not so overlapped (Figure 2Ab, Bb, e.g., peripheral area away from 2-field of view or more apart from the cell body with microscope (60X)). When peripheral region of axonal sheet was analyzed by high-magnification objective lens (60X), vGlut1 and Munc18-1 accumulated clearly in presynapses of axons under the beads (Figure 3). Sometimes, fluorescent signals of synaptic vesicular proteins like vGlut1 are hard to be detected in axonal region outside the beads, because these synaptic vesicular proteins accumulate so much under the beads. In the case of Munc18-1, fluorescent signals can be detected weakly in axonal region outside the beads.
To quantify accumulation level of synaptic proteins in presynapses induced by LRRTM2-beads, fluorescent intensities of axons under the beads and outside the beads were measured, and then calculated as “Protein accumulation index” (Figure 4A, and described in protocol section in detail). Time course experiments demonstrated that accumulation of vGlut1 in presynapses increased significantly at 30 min (Figure 4B). On the other hand, Munc18-1 accumulation started to increase significantly at 2 h, and reach a plateau at 4 h (Figure 4C). These data indicate that the synaptic vesicle protein vGlut1 accumulates in presynapses earlier than the active zone protein Munc18-1. The Munc18-1 accumulation in presynapses of Fmr1-KO neurons increased 1.5 times more than those in wild type (WT) (Figure 4C), indicating involvement of FMRP in Munc18-1 accumulation. Next, to distinguish the Munc18-1 accumulation due to transport from cell bodies or local translation in axons, an effect of the protein synthesis inhibitor anisomycin were examined on the accumulation in the presence or absence of cell bodies (Figure 4D). Anisomycin suppressed the Munc18-1 accumulation significantly in axons (Figure 4D), indicating that the accumulation is protein synthesis-dependent. The accumulation in presynapses of axons without cell bodies was not significantly different to that with cell bodies (Figure 4D). These results suggest that accumulation of Munc18-1 in presynapses are derived mostly from axons, but not transport of Munc18-1 from cell bodies. If accumulation of synaptic proteins is suppressed in presynapses of axons by removing cell bodies, it is considered that this decrease is due to transport from cell bodies. Actually, when we examined the accumulation of total newly synthesized proteins metabolically labeled by fluorescent dye, removing cell bodies reduced significantly the accumulation of total newly synthesized proteins, compared to presynapses of axons with cell bodies8. Although the Munc18-1 accumulation in Fmr1-KO increased more compared to WT, anisomycin suppressed the accumulation in similar level to WT and removing cell bodies had no effect on the accumulation (Figure 4D). These results suggest that FMRP is involved in local translation of Munc18-1 in axons.
Representative results presented here demonstrate that this method is suitable to investigate how synaptic proteins accumulate in organized manner by time course experiments, and to examine source of synaptic proteins (transport from cell bodies or local translation in axons) by removing cell bodies.
Figure 1. Scheme of presynapse formation and removal of cell bodies from neuron ball.
(A) Presynapse formation assay using biotinylated LRRTM2 conjugated streptavidin beads to induce the presynapses in axons of neuron ball culture prepared from E16 cortices. LRRTM2, a postsynaptic protein, binds neurexin (NRXN) and act as a presynapse organizer. Streptavidin beads conjugated to biotinylated LRRTM2 extracellular regions (LRRTM2 beads) were applied at DIV11-12 to neuron ball culture to induce presynapses. This figure has been modified from previous publication8. (B) The yellow tip end was cut and placed on the cell body area of neuron ball culture at 45° angle. The cell bodies were removed by suction. Please click here to view a larger version of this figure.
Figure 2. Munc18-1 accumulation in presynapses in presence and absence of cell bodies of neuron ball.
(A) After 4 h incubation with LRRTM2 beads, the active zone protein Munc18-1 accumulated at the induced presynaptic sites in axons (Upper panel; experimental scheme, middle; phase image, lower; IF images of Munc18-1 accumulation). Images were captured as low magnification images using 10X lens and intermediate magnification (1.5X) to see the whole picture composed of a neuron ball, axons, and beads. Dashed squares indicate the area of neuron ball for accurate imaging position of beads. Scale bar, 20 µm (left; original image), 10 µm (right; enlarged image). (B) Munc18-1 accumulated very well even in the absence of cell bodies at the induced presynaptic sites in axons. This result indicates that axons can survive and form presynapses even after removing cell bodies for at least 4 h. Please click here to view a larger version of this figure.
Figure 3. Accumulation of vGlut1 and Munc18-1 in presynapses of axons with and without cell bodies.
The excitatory presynaptic marker vGlut1 (green) and Munc18-1 (Red) accumulated in presynapses 4 h after addition of LRRTM2 beads. (Upper panel; with cell bodies, lower; without cell bodies). Images were captured using 60X oil immersion lens for high magnification to measure fluorescent intensity. Dashed circle outlined the position of beads. Munc18-1 accumulated almost similar extent in presence and absence of cell bodies in presynapses but vGlut1 accumulation is reduced without cell bodies8. Scale bar, 5 µm. Please click here to view a larger version of this figure.
Figure 4. Procedure of IF intensity measurement and impact of cell bodies removal and protein synthesis inhibitor on Munc18-1 accumulation in neuron balls.
(A) Diagram showed the quantification method of IF intensity at an induced-presynaptic site in axon of neuron ball culture. Scale bar, 5 µm. The details are described in protocol section. (B) Time course of vGlut1 accumulation in presynapses induced with LRRTM2 beads. Data shown are mean ± SEM for n = 20. Two-way ANOVA with Tukey’s multiple comparison test. **p < 0.01. (C) Time course of Munc18-1 accumulation in WT and Fmr1-KO presynapses under LRRTM2 beads. Data shown are mean ± SEM for n = 20, Two-way ANOVA with Tukey’s multiple comparison test. n.s., not significant; **p < 0.01, significantly different between WT and KO. (D) The bar graph showed Munc18-1 accumulation level in presynapses of WT and Fmr1-KO neuron balls in the presence or absence of 25 µM anisomycin (Aniso) with (CB+) or without (CB-) cell bodies. Data shown are mean ± SEM for n = 20. Two-way ANOVA with Tukey’s multiple comparison test. **p < 0.01, n.s., not significant. # indicated p < 0.01, significantly different with and without anisomycin. These figures have been modified from previous publication8. Please click here to view a larger version of this figure.
Supplementary Figure 1. Bicystronic expression vector for LRRTM2-ECR (Extracellular Region) and BirA (biotin ligase from E. coli ).
Between LRRTM2-ECR and BirA coding sequences, there is an Internal Ribosomal Entry Site (IRES) sequence that allows to co-express both proteins from single mRNA. hEF1-HTLV promoter drives expresson the bicstronic mRNA, and both proteins are secreted by signal peptide sequences after translation. LRRTM2-ECR coding sequence is attached to several peptide tag sequences (DYKDDDDK, TEV, Myc and His tags) and Biotin Acceptor Sequence (BAS). BirA is attached to DYKDDDDV tag. Secreted BirA biotinylates lysine of BAS sequence of LRRRTM2-ECR to bind to streptavidine beads. Please click here to download the figure.
We developed novel method to examine presynapse formation stimulated with LRRTM2-beads using neuron ball culture. Currently, most of presynapse formation assay includes poly-D-lysine (PDL)-coated beads and dissociated culture/microfluidic chamber20,21,22. One of advantages of this method is LRRTM2-beads. While LRRTM2 interacts with neurexin to form excitatory presynapses specifically11,12,13, PDL-beads induces both excitatory and inhibitory presynapses nonspecifically20. In this method, other presynapse organizers, whose members are over 10 proteins3, are applicable to induce presynapses by changing extracellular domain of biotinylated protein depending on experimental purpose.
Another advantage is neuron ball culture. In some cases, conventional dissociated culture was used to analyze presynapse formation20. However, dissociated culture is not suitable to analyze low levels of synaptic proteins within presynapses, because overwhelming signals in cell bodies and dendrites interfere signals in presynapses. Instead, some groups use dissociated culture in microfluidic chamber that is special apparatus to culture axons and cell bodies separately in 2 comprtments21,22. Using microfluidic chamber, axonal sheet is formed in axonal compartment, and cell bodies are able to be removed from cell body compartment, similar to neuron ball culture. However, microfluidic chamber is special apparatus, and requires some skills to maintain constant culture condition. Neuron ball culture is not necessary to use special apparatus, and is relatively easy to be introduced as a new experimental method. Because essence of neuron ball culture is just to place neuronal cell aggregates (neuron balls) to glass-bottom dish/chamber, it can be easily combined with other methods. For example, it is considered that neuron ball culture using LRRTM2-beads is applicable for high content screening to measure fluorescence of 10-20 beads area at same time.
Critical step of this protocol is coating with PLL. If PLL coating is not uniform, axons of neuron balls would not extend uniformly in all direction. This disturbs efficient analysis of presynapse formation. We use glass coverslips and glass-bottom dishes, however, glass is sometimes not so clean for neuronal culture and uniform coating with PLL. In this protocol, at first, glass coverslips and glass-bottom dishes are soaked in neutral non-phosphorous detergent for 1-3 overnight, and then washed 8 times with ultrapure water. We use PLL whose molecular weight > 300,000 to reduce its concentration (15 μg/mL) for lower undesirable background. If lower molecular weight of PLL (e.g., 30,000-70,000) is used, higher concentration (100 μg/mL) is necessary to extend axons.
Limitation of this method is that neuron ball culture cannot maintain > DIV15-16. Axons of neuron balls are fragmented after DIV15-16. Fragmented axons do not produce any presynapse after LRRTM2 beads application. Thus, this method is not applicable to analyze mature neurons (> DIV21). However, in most cases11,12,21,22, presynapse formation assay uses younger neurons that are cultured until DIV14. Another limitation is that axons without cell bodies cannot survive over 4 h. We analyzed accumulation of 5 synaptic proteins in presynapses so far, the accumulation of all proteins we checked reached almost plateau within 4 h (unpublished observation). It is considered that synaptic proteins accumulate enough at 4 h to analyze where synaptic proteins are derived from (cell body or axon).
Combination of neuron ball culture with LRRTM2-beads is relatively simple and flexible to adapt many experimental platforms. We have already applied this method to measure presynaptic activity using AM1-43 dye (unpublished observation). This method is considered to be applicable for high throughput screening. Presynapse formation assay is possible to apply high content screening by staining synaptic proteins in presynapses formed under LRRTM2-beads. This method would contribute to find new compounds to cure neurological disease.
The authors have nothing to disclose.
This work is partly supported by JSPS Grant-in-Aid for Scientific Research (KAKENHI) (C) (No. 22500336, 25430068, 16K07061) (Y. Sasaki). We thank Dr. Terukazu Nogi and Ms. Makiko Neyazaki (Yokohama City University) for kindly providing biotinylated LRRTM2 protein. We also thank Honami Uechi and Rie Ishii for technical assistance.
Antibody diluent | DAKO | S2022 | |
Alexa Fluor 594 AffiniPure Donkey Anti-Mouse IgG (H+L) | Jackson ImmunoResearch | 715-585-151 | |
Alexa Fluor 488 AffiniPure Donkey Anti-Rabbit IgG (H+L) | Jackson ImmunoResearch | 711-545-152 | |
mouse anti-Munc18-1 | BD Biosciences | 610336 | |
B-27 Supplement (50X), serum free | Thermo Fisher Scientific | 17504044 | |
Bovine Serum Alubumin (BSA) | Nacalai Tesque | 01863-48 | |
Cell-Culture Treated Multidishes (4 well dish) | Nunc | 176740 | |
Complete EDTA-free | Roche | 11873580001 | |
cooled CCD camera | Andor Technology | iXON3 | |
Coverslip | Matsunami | C015001 | Size: 15 mm, Thickness: 0.13-0.17 mm |
Cytosine β-D-arabinofuranoside (AraC) | Sigma-Aldrich | C1768 | |
4',6-Diamidino-2-phenylindole Dihydrochloride (DAPI) | Nacalai Tesque | 11034-56 | |
Deoxyribonuclease 1 (DNase I) | Wako pure chemicals | 047-26771 | |
Expi293 Expression System | Thermo Fisher Scientific | A14635 | |
Horse serum | Sigma-Aldrich | H1270 | |
image acquisition software | Nikon | NIS-element AR | |
Image analysis software | NIH | Image J | https://imagej.nih.gov/ij/ |
Inverted fluorecent microscope | Nikon | Eclipse Ti-E | |
GlutaMAX | Thermo Fisher Scientific | 35050061 | |
Neurobasal media | Thermo Fisher Scientific | #21103-049 | |
Normal Goat Serum (NGS) | Thermo Fisher Scientific | #143-06561 | |
N-propyl gallate | Nacalai Tesque | 29303-92 | |
Paraformaldehyde (PFA) | Nacalai Tesque | 26126-25 | |
Paraplast Plus |
Sigma-Aldrich | P3558 | |
Poly-L-lysine Hydrobromide (MW > 300,000) | Nacalai Tesque | 28359-54 | |
poly (vinyl alcohol) | Sigma | P8136 | |
Prepacked Disposable PD-10 Columns | GE healthcare | 17085101 | |
rabbit anti-vesicular glutamate transporter 1 | Synaptic Systems | 135-302 | |
SCAT 20X-N (neutral non-phosphorous detergent) | Nacalai Tesque | 41506-04 | |
Streptavidin-coated magnetic particles | Spherotech Inc | SVM-40-10 | diameter: 4-5 µm |
TritonX-100 | Nacalai Tesque | 35501-15 | |
Trypsin | Nacalai Tesque | 18172-94 |