Here, we provide a method for analyzing the behavior of growing axons in 3D matrices, mimicking their natural development.
This protocol uses natural type I collagen to generate three-dimensional (3-D) hydrogel for monitoring and analyzing the axonal growth. The protocol is centered on culturing small pieces of embryonic or early postnatal rodent brains inside a 3-D hydrogel formed by the rat tail tendon-derived type I collagen with specific porosity. Tissue pieces are cultured inside the hydrogel and confronted to specific brain fragments or genetically-modified cell aggregates to produce and secrete molecules suitable for creating a gradient inside the porous matrix. The steps of this protocol are simple and reproducible but include critical steps to be considered carefully during its development. Moreover, the behavior of growing axons can be monitored and analyzed directly using a phase-contrast microscope or mono/multiphoton fluorescence microscope after fixation by immunocytochemical methods.
Neuronal axons, ending in axonal growth cones, migrate long distances through the extracellular matrix (ECM) of the embryo over specific pathways to reach their appropriate targets. The growth cone is the distal portion of the axon and it is specialized to sense the physical and molecular environment of the cell1,2. From a molecular point of view, growth cones are guided by at least four different molecular mechanisms: contact attraction, chemoattraction, contact repulsion, and chemorepulsion triggered by different axonal guidance cues3,4,5,6. Contact-mediated processes can be partially monitored in two-dimensional (2D) cultures on micro-patterned substrates (e.g., with stripes7,8 or spots9 containing the molecules). However, axons can navigate to their target in a non-diffusive manner by sensing several attractive and repulsive molecules from guidepost cells in the environment4,5,10. Here, we describe an easy method of 3-D culture to check whether a secreted molecule induces chemorepulsive or chemoattractive effects on developing axons.
The earliest studies aimed to determine the effects of axon guidance cues used explant cultures in three-dimensional (3-D) matrices to generate gradients simulating in vivo conditions11,12. This approach, together with in vivo experiments, allowed for the identification of four major families of guidance cues: Netrins, Slits, Semaphorins, and Ephrins4,5,6. These molecular cues and other factors13 are integrated by the growing axons, triggering the dynamics of adhesion complexes and transducing mechanical forces via the cytoskeleton14,15,16. To generate molecular gradients in 3-D cultures for axonal navigation, pioneering researchers used plasma clot substrates17, which was also used for organotypic slice preparations18. However, in 1958, a new protocol to generate 3-D collagen hydrogels was reported for studying with Maximow´s devices19, a culture platform, used in several studies suitable for microscopic observations20. Another pioneer study reported collagen gel as a tool to embed human fibroblasts for studying the differentiation of fibroblasts into myofibroblasts in wound healing processes21. In parallel, Lumsden and Davies applied collagen from the bovine dermis to analyze the putative effect of nerve growth factor (NGF) on the guiding of sensory nerve fibers22. With the development of new culture platforms (e.g., multi-well plates) by different companies and laboratories, collagen cultures were adapted to these new devices6,23,24,25,26. In parallel, an extract of ECM material derived from the Engelbreth-Holm-Swarm tumor cell line was made commercially available to expand these studies27.
Recently, several protocols have been developed to generate molecular gradients with putative roles in axon guidance using 3-D hydrogels (e.g., collagen, fibrin, etc.)28. Alternatively, the candidate molecule can be immobilized at different concentration in a porous matrix (e.g., NGF29) or generated by culturing in a small region of the 3-D hydrogel cell aggregates secreting the molecule to generate a radial gradient4,23,24,25,26. The last possibility will be explained in this protocol.
The procedure presented here is an easy, fast and highly reproducible method based on the analysis of axonal growth in 3-D hydrogel cultures of the embryonic mouse brain. In comparison with other methods, the protocol is well suited for non-trained researchers and can be fully developed after a short training (1-2 weeks). In this protocol, we first isolate collagen from adult rat tails to further generate 3-D matrices in which genetically-modified cell aggregates are cultured in front of the embryonic neuronal tissue. These cell aggregates form radial chemical gradients of a candidate molecule which elicits a response for the growing axons. Finally, the evaluation of the effects of the molecule on growing axons can easily be performed using a phase contrast microscopy or, alternatively, immunocytochemical methods.
All animal experiments were performed under the guidelines and protocols of the Ethical Committee for Animal Experimentation (CEEA) of the University of Barcelona, and the protocol for the use of rodents in this study was reviewed and approved by the CEEA of the University of Barcelona (CEEA approval #276/16 and 141/15).
1. Purification of Rat Tail Collagen
2. Preparation of Cell (COS1) Aggregates Genetically-modified to Secrete a Candidate Molecule in 3-D Collagen Hydrogels
3. Generation of Embryonic Explant for Culture
4. Preparation of 3-D Co-cultures in Collagen Hydrogels
5. Fixation of Explant-cell Aggregate Co-cultures and Immunocytochemical Procedure
Here, we present a widely accessible methodology to study axonal growth in 3-D hydrogel collagen cultures of embryonic mouse nervous system. To this end, we isolated collagen from adult rat tails to generate 3-D matrices in which we cultured genetically-modified cell aggregates expressing Netrin-1 or Sema3E confronted with embryonic neuronal tissue (e.g., CA region of the hippocampus). These cell aggregates formed a radially distributed gradient of the candidate molecule inside the collagen matrix. Finally, to evaluate the neuronal response to different molecules, we labeled the cultures using immunocytochemical methods (e.g., α-TUJ-1) and by applying a simple and easy quantification method, we obtained enough data to determine the effect of the putative candidate on axonal behavior.
In our experiment, when hippocampal axons were confronted with Netrin-1, these axons grew preferentially towards the source of Netrin-1 which indicates that Netrin-1 acts as a chemoattractive molecule for these axons (Figure 1B). In contrast, when hippocampal axons where confronted with Sema3E-secreting cells, most of them grew opposite to the cell aggregate indicating that Sema3E is a chemorepulsive molecule for them (Figure 1C). In the control condition (mock transfection), all axons grew radially without any directional preference (Figure 1A). Figure 1D-E are schematic representations of the axonal response and quantification method. After image acquisition, we drew a line in the middle of the explant which delimited the proximal (close to cell aggregate) and the distal (opposite to the cell aggregate) quadrants in order to calculate the proximal/distal ratio (P/D ratio). In control conditions, the axons were equally distributed in both quadrants (radial outgrowth) which indicated a ratio P/D = 1 (Figure 1D). When explants showed increased number of axons in the proximal quadrant in comparison to the distal (indicating chemoattraction) the ratio was P/D > 1 (Figure 1E) and when the number of axons was higher in the distal quadrant than in the proximal one (indicating chemorepulsion) the ratio was P/D < 1 (Figure 1F).
In order to achieve excellent results with this technique, we must make sure that collagen polymerization is homogenous, cell transfection is efficient, and the distance between the tissue explant and the cell aggregate is appropriate (see Discussion).
In conclusion, we can confirm that the generation of 3-D collagen-based hydrogels is a useful technique in order to evaluate axonal growth and behavior responses to candidate guidance molecules which can be playing essential roles in the axonal migration during nervous system development.
Figure 1: Examples of explants growing in 3-D hydrogels in confrontation experiments and quantification methods. (A-C) Explants were obtained from the hippocampal region at E14.5, cultured for 48 h in vitro, and labeled with βIII-tubulin (α-TUJ-1) by immunostaining. Differences in axonal growth can be observed visually. Please compare (A) with (B-C). (D-E) Schematic representations of the axonal response and quantification method. Dotted line delimits both the proximal (P) and the distal (D) quadrant in order to calculate the ratio P/D. Ratio P/D = 1 represents a radial pattern of growth (D); P/D > 1 indicates a chemoattractive response (E), and P/D < 1 indicates a chemorepulsive effect (F). Abbreviations: CA = CA1-3 hippocampal regions; D = distal quadrant; P = proximal quadrant. Scale bars = 200 μm (A-C). Please click here to view a larger version of this figure.
The growth of developing axons is mainly invasive and includes ECM degradation and remodeling. Using the procedure presented here, researchers can obtain a homogenous 3-D matrix formed by the natural type I collagen in which axons (or cells) can respond to a chemical gradient secreted by genetically-modified cells as they do in vivo. Different axonal responses to gradients of attractive or inhibitory cues (protein, lipids, etc.) can be easily compared to specific control (mock transfected cells). As advantages, we must mention that tendons are easy to isolate and indeed they can be remnants of animal experimentation. In addition, tendons are highly collagen I concentrated compared to other tissues such as skin or lung31.
Although the methodology presented here is simple to perform, there are some steps that need special attention during the process. Concerning collagen extraction, it is imperative to remove unwanted blood vessels and skin debris from tail tendons in order to improve collagen purity and the quality of gelation. Also, it is mandatory to maintain sterile conditions by performing some steps under a sterile laminar flow hood and sterilizing the surgical tools before use. In addition, it is important to maintain the appropriate pH and temperature conditions of the solutions. For instance, if MEM 10x and bicarbonate solutions are not optimal, the collagen matrix will not polymerize homogeneously, and consequently, the axonal growth and result will be negatively affected. Moreover, if the collagen stock solution is too concentrated or too diluted, the matrices will not gel properly. In our experience, the best collagen stock concentration is approximately 5-5.5 mg/mL of protein (quantified by a colorimetric protein assay kit) and we use a 3:1 dilution (Collagen: 0.1x MEM) to obtain perfect hydrogel matrices. Regarding cell transfection and cell aggregate formation, it is important to maintain sterile conditions and avoid possible contamination, for example, purifying plasmid vectors with endotoxin-free plasmid DNA purification kits is mandatory. Also, we must emphasize that the transfection conditions vary depending on the cell type, passage number, and the plasmid characteristics. Here, we have reported the optimal and routine conditions in our hands. Therefore, researchers should test the recommended concentrations indicated by the manufacturer or adjust them to determine their own optimal conditions.
Regarding the problems that may arise with this technique, we must consider that sometimes the 3-D matrices do not present the expected homogeneous gel-like structure. In this case, it is important to check the temperature and pH condition of the solutions and discard them in case it is incorrect. Also, it is recommended to perform a quality control test such as denaturing polyacrylamide gel electrophoresis (SDS-PAGE) under reducing conditions to validate the purity of collagen stock preparation. With this approach, pure and undamaged type I collagen shows a typical migration pattern consisting of 2 monomeric α chains (α1 and α2), 3 dimeric β chains (β11, β12, variant β11), and 1 trimeric γ chain32,33. If the obtained collagen does not fit this pattern, it should not be used. Lastly, after immunostaining, axons can appear radially distributed when confronted with cells secreting a chemorepulsive or chemoattractive molecule. In this situation, the efficiency of transfection must be checked by performing a dot blotting technique on the proper co-culture system (if the DNA plasmids are alkaline phosphatase-tagged) or by processing the culture media after transfection by western blotting. A limitation to consider is that the distance between the cell aggregate and tissue explant is crucial. If they are very far apart, we will not be able to see any clear effect of the secreted molecule on the tissue explant, but if they are very close to each other, the effect will be too strong to be considered as a good result. From our experience, the appropriate distance is around one explant-size (400-500 μm) because the molecular gradient generated by the cell aggregate will extend radially from along 400-500 μm after 24 h in culture.
Alternatively, one can use commercial tumor-derived ECM extract instead of rat tail collagen. In that case, all the procedures must be performed at between 4 and 10 °C, since the gelation of commercial ECM extract is temperature-dependent. Thus, special care should be taken to ensure all culture dishes, pipette tips, culture media, and solutions are maintained at 4 °C.
Finally, although the method presented here is mainly associated with the analysis of neuronal functions such as axonal growth or neuronal migration, it also becomes a useful technique for the pharmacological screening, adhesion assays, in vitro fibrillation experiments and tissue engineering strategies34,35,36.
The authors have nothing to disclose.
The authors thank Tom Yohannan for the editorial advice and M. Segura-Feliu for the technical assistance. This work was funded by the CERCA Programme and by the Commission for Universities and Research of the Department of Innovation, Universities, and Enterprise of the Generalitat de Catalunya (SGR2017-648). This work was funded by the Spanish Ministry of Research, Innovation and University (MEICO) through BFU2015-67777-R and and RTI2018-099773-B-100, the Spanish Prion Network (Prionet Spain AGL2017-90665-REDT), and the Institute Carlos III, CIBERNED (PRY-2018-2).
Material | |||
3,3′-Diaminobenzidine tetrahydrochloride 10 mg tablets (DAB) | Sigma | D5905 | |
Adult Sprague-Dawley rats (8 to 9 weeks old) | Criffa-Credo, Lyon, France | ||
Avidin-biotin-peroxidase complex (ABC) | Vector Labs | PK-4000 | |
B27 serum-free supplement 50x | Invitrogen | 17504-044 | |
Bicinchoninic acid (BCA) protein assay kit | Pierce | 23225 | |
cDNA plasmid vectors | |||
COS1 cell lines | ATTC | CRL-1570 | |
D-(+)-Glucose | Sigma | 16325 | |
D-(+)-glucose (45% solution in water) for complete Neurobasal medium | Sigma | G8769 | |
D-MEM (Dulbecco's Modified Eagle Medium 1x ) for COS1 culture medium | Invitrogen | 41966-029 | |
Dulbecco’s phosphate buffered saline 10x (without Ca2+ and Mg2+) (D-PBS) for cultures | Invitrogen | 14200 | |
Ethanol | merck | 108543 | |
Ethylenediaminetetraacetic acid dihydrate disodium salt (EDTA) | Sigma | E5134 | |
Fluorescence mounting media (e.g., Fluoromount-G or similar) | Electron Microscopy Sciences (EMS) | 17984-25 | |
Gelatin powder | Sigma | G1890 | |
Glacial acetic acid (Panreac, cat. no. 211008) | Panreac | 211008 | |
Hank’s balanced salt solution | Invitrogen | 24020083 | |
Heat-inactivated foetal bovine serum | Invitrogen | 10108-165 | |
Heat-inactivated horse serum | Invitrogen | 26050-088 | |
Hydrogen peroxide (H2O2, 32 to 33% in water) | Sigma | 316989 | |
L-glutamine 200 mM solution (100x) for complete Neurobasal and COS1 medium | Invitrogen | 25030-024 | |
Lipofectamine 2000 Reagent | Invitrogen | 11668-019 | |
Mice pregnant female (embryonic day 12.5 to 16.5; E12.5-16.5) | Criffa-Credo, Lyon, France | ||
Modified Minimum Essential Medium Eagle (MEM) | Invitrogen | 11012-044 | |
Monoclonal antibody against class III β-tubulin (clone TUJ-1) | Biolegend | 801201 | |
N-2 supplement 100x | Invitrogen | 17502-048 | |
Neurobasal medium | Invitrogen | 21103049 | |
Paraformaldehyde | Merck | 1,040,051,000 | |
Penicillin/streptomycin solution 100x | Invitrogen | 15140-22 | |
Phosphate buffered saline 10x (PBS) for immunocytochemistry | Invitrogen | AM9624 | |
Secondary antibody: biotinylated horse anti-mouse | Vector Labs | BA-2000 | |
Serum-free medium (Opti-MEM) | Invitrogen | 11058-021 | |
Sodium azide | Panreac | 162712 | |
Sodium bicarbonate solution 7.5% | Invitrogen | 25080-094 | |
Sterile culture grade H2O | Sigma | W3500 | |
TritonTM X-100 | Sigma | X100 | |
Trizma base | Sigma | T1503 | |
Trypsin-EDTA (Trypsin (0.05% (wt/vol) with EDTA (1x) | Invitrogen | 25300-054 | |
Equipment | |||
1 large and 1 small curved scissors for dissection | Fine tools Instruments or similar | ||
1.5-ml conical centrifuge tubes | Eppendorf or similar | ||
15-ml conical centrifuge tubes | Corning or similar | ||
2 haemostats | Fine tools Instruments or similar | ||
2 small straight dissecting scissors | Fine tools Instruments or similar | ||
200-ml centrifuge tubes for centrifugation | Nalgene or similar | ||
200-ml sterile glass conical flasks | |||
2-litre glass beaker | |||
4- and 6-well culture plates | Nunc | 176740 and 140675 | |
Automatic pipette pumps and disposable 10 ml and 25 ml filter-containing sterile plastic pipettes. | Gilson, Brand, Eppendorf or similar | ||
Automatic pipettes, sterile filter tips and current sterile tips | Gilson, Eppendorf or similar | ||
Bench top microcentrifuge with angle fixed rotor | Eppendorf, Beckman Coulter or similar | ||
Bench top refrigerated centrifuge with swing-bucket rotor (with 1.5, 15 and 50 ml tube adaptors) | Eppendorf, Beckman Coulter or similar | ||
Cell culture incubator at 37 ºC, 5% CO2 and 95% air | |||
Dialysis tubing cellulose membrane | Sigma | D9402 | |
Dialysis tubing closures | Sigma | Z37101-7 | |
Disposable glass pipettes | |||
Dissecting microscope with dark field optics | Olympus SZ51 or similar | ||
High-speed refrigerated Beckman Coulter centrifuge or similar with angle fixed rotor | |||
Laminar flow hood | |||
Large 100-mm, 60-mm and small 35-mm Ø cell culture dishes | Nunc | 150679 , 150288 and 150318, respectively | |
Magnetic stirrer and magnetic spin bars | IKA or similar | ||
McIlwain tissue chopper | Mickle Laboratory Engineering | ||
One pair of fine straight forceps and one pair of curved forceps | Fine tools Instruments or similar | ||
Razor blades for the tissue chopper | |||
Scalpels (number 15 and 11) | |||
Two pairs of fine spatulas for transferring collagen and tissue pieces | Fine tools Instruments or similar |