We present a method combining whole-cell patch-clamp recordings and two-photon imaging to record Ca2+ transients in neuronal dendrites in acute brain slices.
Calcium (Ca2+) imaging is a powerful tool to investigate the spatiotemporal dynamics of intracellular Ca2+ signals in neuronal dendrites. Ca2+ fluctuations can occur through a variety of membrane and intracellular mechanisms and play a crucial role in the induction of synaptic plasticity and regulation of dendritic excitability. Hence, the ability to record different types of Ca2+ signals in dendritic branches is valuable for groups studying how dendrites integrate information. The advent of two-photon microscopy has made such studies significantly easier by solving the problems inherent to imaging in live tissue, such as light scattering and photodamage. Moreover, through combination of conventional electrophysiological techniques with two-photon Ca2+ imaging, it is possible to investigate local Ca2+ fluctuations in neuronal dendrites in parallel with recordings of synaptic activity in soma. Here, we describe how to use this method to study the dynamics of local Ca2+ transients (CaTs) in dendrites of GABAergic inhibitory interneurons. The method can be also applied to studying dendritic Ca2+ signaling in different neuronal types in acute brain slices.
The contribution of a neuron to network activity is largely determined by the dynamic nature of the synaptic inputs it receives. Traditionally, the predominant method of characterizing synaptic activity in neurons relied on somatic whole-cell patch-clamp recordings of postsynaptic currents evoked by electrical stimulation of axons of passage. However, only activity of the proximally located synapses is truthfully reported in this case1. In addition, to assess the synapse-specific mechanisms, recordings from pairs of neurons and from dendrites at a specific location have been used to target the synapses of interest and the mechanisms of dendritic integration, respectively. A major breakthrough in the field of synaptic physiology was achieved through a marriage of optical and electrophysiological techniques. Two-photon excitation laser scanning microscopy (2PLSM) in combination with Ca2+ imaging and optogenetic tools can reveal tremendous details of the dynamic organization of synaptic activity at specific neuronal connections in brain slices in vitro and in vivo.
Several key advantages made 2PLSM stand out from the conventional, one-photon excitation microscopy2: (1) due to a nonlinear nature of two-photon excitation, the fluorescence is generated only in the focal volume, and all emitted photons represent useful signals (no need for pinhole); (2) longer wavelengths, used in 2PLSM, penetrate the scattering tissue more efficiently; in addition, scattered photons are too dilute to produce two-photon excitation and background fluorescence; (3) photodamage and phototoxicity are also limited to the focal plane. Therefore, despite the high cost of 2-photon systems in comparison with conventional confocal microscopes, the 2PLSM remains a method of choice for high-resolution investigation of neuronal structure and function in thick living tissue.
The first application of 2PLSM in scattering tissue was to image the structure and function of dendritic spines3. 2PLSM in combination with Ca2+ imaging has revealed that spines function as isolated biochemical compartments. Since in many neuronal types there is a one-to-one correspondence between spines and individual synapses4, two-photon Ca2+ imaging soon became a useful tool reporting the activity of individual synapses in intact tissue5,6,7,8. Furthermore, 2PLSM-based Ca2+ imaging was successfully used to monitor the activity of single calcium channels and the nonlinear interactions between the intrinsic and synaptic conductances, as well as to assess the state- and activity-dependent regulation of Ca2+ signaling in neuronal dendrites5,6,7,8,9,10,11.
Calcium is a ubiquitous intracellular second messenger, and its subcellular spatiotemporal organization determines the direction of physiological reactions, from changes in synaptic strength to the regulation of ion channels, dendrite and spine growth, as well as cell death and survival. Dendritic Ca2+ elevations occur via activation of multiple pathways. Action potentials (APs), backpropagating to the dendrites, open voltage-gated calcium channels12 and produce relatively global Ca2+ transients (CaTs) in dendrites and spines13. Synaptic transmission is associated with activation of postsynaptic Ca2+-permeable receptors (NMDA, Ca2+-permeable AMPA and kainate), triggering synaptic CaTs6,14,15. Finally, supralinear Ca2+ events can be generated in dendrites under certain conditions11,12,13,16.
Two-photon Ca2+ imaging in combination with patch-clamp electrophysiological recordings employs synthetic Ca2+-sensitive fluorescent indicators, which are typically delivered through the patch electrode during whole-cell recordings. A standard method for quantification of Ca2+ dynamics is based on the dual indicator method17,18. It uses two fluorophores with well separated emission spectra (e.g., a combination of a red Ca2+-insensitive dye with green Ca2+ indicators, such as Oregon Green BAPTA-1 or Fluo-4) and has several advantages when compared to the single indicator method. First, a Ca2+-insensitive dye is used to locate small structures of interest (dendritic branches and spines) where Ca2+ imaging will be performed. Second, the ratio between the change in green and red fluorescence (ΔG/R) is calculated as a measure of [Ca2+], which is largely insensitive to changes in baseline fluorescence due to fluctuations in [Ca2+]017,18. Furthermore, fluorescence changes can be calibrated in terms of absolute Ca2+ concentrations19.
A general concern when running two-photon Ca2+ imaging experiments in acute slices is cell health and stability of the image acquisition due to the high laser power typically used. Additionally, in Ca2+ imaging experiments, there is concern about the perturbation and substantial overestimation of subcellular Ca2+ dynamics due to the fact that Ca2+ indicators act as highly mobile exogenous Ca2+ buffers. Thus, the choice of the Ca2+ indicator and its concentration depends on the neuronal type, the anticipated amplitude of CaTs, and on the experimental question.
We adapted the method of two-photon Ca2+ imaging for investigation of Ca2+ fluctuations in dendrites of GABAergic interneurons9,10,11,20,21,22. While the bulk of early Ca2+ imaging studies were done in principal neurons, inhibitory interneurons showcase a large variety of functional Ca2+ mechanisms that are distinct from those in pyramidal cells20,23,24. These interneuron-specific mechanisms (e.g., Ca2+ permeable AMPA receptors) may play specific roles in regulating cell activity. While dendritic Ca2+ signaling in interneurons is a tempting target for further investigation, two-photon Ca2+ imaging in dendrites of these cells presents additional challenges, from a thinner diameter of dendrites and lack of spines to a particularly high endogenous Ca2+ binding capacity. As our research interests focus on the study of hippocampal interneurons, the following protocol, while applicable to different neuronal populations, was adapted to deal with those challenges.
This protocol was executed with a commercial confocal two-photon microscope, which was equipped with two external, non-descanned detectors (NDDs), electro-optical modulator (EOM), and a Dodt scanning gradient contrast (SGC), and installed on an optical table. The microscope was coupled with a Ti:Sapphire multiphoton laser mode-locked at 800 nm (> 3 W, 140 fs pulses, 80 Hz repetition rate). The imaging system was equipped with a standard electrophysiology rig, including a perfusion chamber with temperature control, a translating platform with two micromanipulators, a computer-controlled microelectrode amplifier, a digitizer, a stimulation unit, and data acquisition software.
All experiments were performed in accordance with the animal welfare guidelines of the Animal Protection Committee of Université Laval and the Canadian Council on Animal Care.
1. Preliminary Preparation (Optional: Prepare 1 Day in Advance)
2. Hippocampal Slice Preparation
3. Whole-cell Patch-clamp Recordings
4. Two-photon Ca2+ Imaging
5. Immunohistochemistry for Post Hoc Morphological Identification of Recorded Cells
NOTE: After 1 night of fixation in PFA, the slice can be stored in phosphate buffer (PB) with sodium azide (0.5%) for up to 1 month.
6. Analysis of CaTs
Using the protocol presented here, we obtained CaTs evoked by somatic current injection and by electrical stimulation in dendrites of oriens/alveus interneurons in the CA1 area of the hippocampus. After patching a neuron, identified based on its shape and position, we acquired linescans across a proximal dendrite at multiple points at given distances from the soma (Figure 1A). We observed a decrease in the amplitude of CaTs induced by backpropagating APs as the distance from the soma increased (indicative of reduced AP amplitude or a distance-dependent decline in calcium channel distribution, Figure 1B). After immunohistochemistry (using Streptavidin-conjugated Alexa Fluor 546), we were able to retrieve the biocytin labeling of the cell and identify the recorded neuron as a bistratified cell with an axon occupying stratum oriens and stratum radiatum (Figure 1C). In the second experiment, a stimulation pipette was brought to a distal dendritic site. Scanning along the dendrite, we were then able to assess the amplitude of the postsynaptic Ca2+ signals in a given dendritic branch (Figure 2A–C) in response to electrical stimulation of axons of passage. The postsynaptic CaTs differed between neighboring dendritic microdomains (segment 1 to 6; Figure 2D), which could be associated with a spread of Ca2+ signal from the zone of initiation and/or different postsynaptic mechanisms involved.
Figure 1: Representative example of AP-evoked Ca2+ transients. (A) Maximum projection of a two-photon Z-stack (13 µm) of a patched interneuron filled with Alexa-594 (20 µM). White lines denote the location and length of linescans. (B) Traces showing the CaTs elicited in the locations shown in A. Top trace shows the short AP train generated through somatic current injection during the recording trial. Time scale is the same on all traces shown. (C) Maximum projection of a confocal Z-stack showing the biocytin labeling of the cell. O/A: Oriens/Alveus; PYR: Stratum Pyramidale; RAD: Stratum Radiatum. Please click here to view a larger version of this figure.
Figure 2: Postsynaptic Ca2+ transients evoked by a burst of electrical stimulation (3 stimuli at 100 Hz). (A) Maximum projection of a two-photon Z-stack (148 µm) showing a patched interneuron filled with Alexa-594. White arrowheads point to the location of axonal terminals within the pyramidal layer, suggesting the interneuron is a basket cell. (B) Single focal plane illustrating the dendritic branch where the stimulation electrode was positioned. Dashed line shows the location of the linescan shown in (C1 and C2). (C) Images illustrating the result of a linescan in the red (1; Alexa-594; 20 µM) and green (2; Oregon Green Bapta-5N; 300 µM) channels. The images were binned into smaller segments to analyze the spread of the response over 30 µm. (D) Traces showing the Ca2+ transients (CaTs) elicited in the segments displayed in C2. Top trace shows the voltage response to electrical stimulation recorded at the somatic level during the imaging trial. Please click here to view a larger version of this figure.
Solution | Component | Concentration (mM) |
ACSF-Normal | NaCl | 124 |
KCl | 2.5 | |
NaH2PO4 | 1.25 | |
MgSO4 | 2 | |
NaHCO3 | 26 | |
Glucose | 10 | |
CaCl2 | 2 | |
ACSF-Recovery | NaCl | 124 |
KCl | 2.5 | |
NaH2PO4 | 1.25 | |
MgSO4 | 3 | |
NaHCO3 | 26 | |
Glucose | 10 | |
CaCl2 | 1 | |
ACSF-Sucrose | KCl | 2 |
NaH2PO4 | 1.25 | |
MgSO4 | 7 | |
NaHCO3 | 26 | |
Glucose | 10 | |
Sucrose | 219 | |
CaCl2 | 1 | |
K+-based Patch solution | K+-gluconate | 130 |
HEPES | 10 | |
MgCl2 | 2 | |
Phosphocreatin di(tris)salt | 10 | |
ATP-Tris | 2 | |
GTP-Tris | 0.2 | |
Biocytin | 72 | |
Alexa-594 | 0.02 | |
Oregon Green-BAPTA-1 | 0.2 |
Table 1: Solution recipes. Compounds and concentrations for solutions used during the protocol.
Problem | Solution |
Unable to patch healthy neuron | Check for signs that the slices are unhealthy: shrunken or swollen cells, visible nuclei, etc. If so, discard the slices. Also verify the patch-pipette resistance and the patch-solution’s osmolality; replace them if the values are not in the appropriate range. |
Fluorescence signal from dendrites is low | Wait longer for the cell to fill. If an obstruction is keeping the patch-solution from diffusing into the cell, try to apply a small amount of negative pressure in the patch-pipette. |
Electrical stimulation is not evoking a Ca2+ response | Check for the presence of an artefact in the electrophysiological recording. If absent, check for a short-circuit/stimulating unit malfunction. If present, raise the stimulation intensity or move the stimulation pipette closer to the dendrite. It is to be noted that the distance between the stimulation electrode and the dendrite should not exceed 8 um to prevent direct depolarization of dendrites when studying synaptic responses. |
Evoked Ca2+ signal is too high/saturates the Ca2+ indicator | Reduce laser power. If the problem persists in multiple cells, use a different Ca2+ indicator, with a lower Ca2+ affinity. |
Baseline Ca2+ signal is gradually increasing during the experiment | Wait for a longer period between individual scans. If the baseline is still increasing, stop acquisition; it indicates that the cell’s health is likely declining. |
Amplitude of Ca2+ signal decreases during scans | Reduce laser power or zoom out (if applicable). |
Dendrite is fragmenting (“blebbing”) after scanning | Reduce the laser power or zoom out. If blebbing is limited to the targeted dendrite, choose another dendrite and reduce laser power/ zoom out. If multiple dendrites are blebbing, stop acquisition. |
Fluorescence signals are “drifting” out of the scan line after sweeps | Reduce movement in the slice by reducing the speed of ACSF perfusion. Before patching, make sure that the slice is strongly fixed in place by a net. |
Table 2: Troubleshooting table. Solutions to common problems that may arise during a Ca2+ imaging experiment.
The method shown here demonstrates how the combination of two-photon Ca2+ imaging and patch-clamp electrophysiology can be used for studying dendritic Ca2+ signaling in neuronal dendrites in acute brain slices. This method allows for monitoring of both the local Ca2+ elevations evoked by electrical stimulation or backpropagating AP in dendritic segments, and the cell's somatic response. This makes it an excellent tool to study how various parts of the dendritic tree integrate inputs and communicate with the soma. But given the length of the experiment, particular attention needs to be paid to the cell health by limiting the use of laser power for imaging so as to avoid the photodamage of dendrites. This can be also achieved by decreasing the zoom level, decreasing the duration of scan, and increasing the scan speed during image acquisition. Imaging interneuron dendrites introduces additional challenges. As dendrites of these cells have no spines, scanning along the dendrite is recommended to facilitate the localization of postsynaptic Ca2+ microdomains. In addition, given a high endogenous Ca2+ binding capacity, Ca2+ elevations in interneuron dendrites are smaller and slower than those generated in the dendrites of pyramidal cells. This requires acquiring several linescan images for averaging as well as a sufficiently long duration of individual linescans in order to describe the Ca2+ signal kinetics appropriately.
Local electrical stimulation using bipolar theta-glass electrode represents a useful tool for characterization of dendritic postsynaptic Ca2+ microdomains. However, it may still activate different "en passant" axons located in a given region. The number of inputs activated in this case is unknown and can be only estimated using additional computational tools. Two-photon glutamate uncaging27, which allows for simultaneous stimulation of multiple individual synapses, represents a good alternative for eliciting local dendritic Ca2+ responses. This method is widely used for study of principal cells, which have clearly defined excitatory postsynaptic structures (spines), but is not well-suited to the study of interneurons, which overall have a low spine density. Uncaging glutamate along the interneuron dendrite as it is applied to principal cells would unavoidably activate multiple extrasynaptic mechanisms of Ca2+ signaling9,10, making it difficult to interpret the observations.
In the last decade, advances in optical technologies offered improved temporal resolution for two-photon Ca2+ imaging. One of the most promising is random-access microscopy (RAMP) through acousto-optic deflectors (AODs)28,29. Unlike conventional raster scanning, RAMP scans selected points of interest at high frequency, which is enabled by the fast speed of inertia-free AODs. It is ideal for the simultaneous study of multiple dendritic branches, as it is not limited to points laid out in a linear pattern. However, the higher temporal resolution offered by the AODs may be unnecessary when imaging Ca2+ events lasting hundreds of milliseconds within the same focal plan. In addition, the location of scanning points within the same structure of interest may be difficult to control due to micro-drifts in slice preparations associated with a high perfusion rate, which is necessary for good slice quality. Hence, the high temporal resolution (500-700 Hz) linescan-based acquisition method presented in this article is still preferable when imaging Ca2+ signals in individual dendritic branches.
The authors have nothing to disclose.
This work was supported by the Canadian Institutes of Health Research, the Natural Sciences and Engineering Research council (NSERC Discovery Grant) and the Savoy Foundation. OC was supported by a Ph.D. fellowship from NSERC.
Animal Strain: Mouse CD1 | Charles River | 022 | |
Isoflurane | AbbVie Corporation | 0B506-099 | |
CGP 55845 hydrochloride | Abcam | ab120337 | |
Calcium chloride | Sigma-Aldrich | C4901 | |
D-(+)-Glucose | Sigma-Aldrich | G8270 | |
HEPES | Sigma-Aldrich | H3375 | |
Magnesium chloride | Sigma-Aldrich | M8266 | |
Magnesium sulfate heptahydrate | Sigma-Aldrich | 230391 | |
Paraformaldehyde powder, 95% | Sigma-Aldrich | 158127 | |
Potassium chloride | Sigma-Aldrich | P3911 | |
Potassium gluconate | Sigma-Aldrich | P1847 | |
Sodium azide | Sigma-Aldrich | S2002 | |
Sodium bicarbonate | Sigma-Aldrich | S8875 | |
Sodium chloride | Sigma-Aldrich | S5886 | |
Sucrose | Sigma-Aldrich | S9378 | |
Triton X-100 | Sigma-Aldrich | T9284 | |
Trizma base | Sigma-Aldrich | T1503 | |
Trizma hydrochloride | Sigma-Aldrich | T3253 | |
Sodium phosphate dibasic dihydrate | Sigma-Aldrich | 71643 | |
Sodium phosphate monobasic monohydrate |
Sigma-Aldrich | S9638 | |
Biocytin | Sigma-Aldrich | B4261 | |
Alexa Fluor 594 Hydrazide | ThermoFisher Scientific | A10438 | |
SR95531 (Gabazine) | Abcam | ab120042 | |
Adenosine triphosphate (ATP)-Tris |
Sigma-Aldrich | A9062 | |
Guanosine (GTP)-Na+ |
Sigma-Aldrich | G8877 | |
Oregon Green BAPTA-1 |
ThermoFisher Scientific | O6812 | |
Phosphocreatine di(tris) salt |
Sigma-Aldrich | P1937 | |
Streptavidin-conjugated Alexa-546 |
ThermoFisher Scientific | S11225 | |
Patch Borosilicate Glass Capillaries |
World Precision Instruments | 1B100F-4 | |
Theta Borosilicate Glass Capillaries |
Sutter Instrument | BT-150-10 | |
P-97 Flaming/Brown Micropipette puller |
Sutter Instrument | ||
TCS SP5 Confocal Multiphoton Microscope |
Leica Microsystems | ||
Chameleon Ultra II Ti:Sapphire multiphoton laser |
Coherent | ||
LAS AF Imaging Acquisition Software | Leica Microsystems | ||
Temperature Controller TC-324B |
Warner Instruments | ||
MultiClamp 700B Amplifier |
Molecular Devices | ||
Digidata 1440A Digitizer |
Molecular Devices | ||
Confocal Translator |
Siskiyou | ||
Micromanipulator |
Siskiyou | ||
pClamp Data Acquisition Software |
Molecular Devices | ||
A365 Constant Current Stimulus Isolator |
World Precision Instruments | ||
Vibraplane Optical Table |
Kinetic Systems |