This protocol describes how the use of diffuse polarization spectroscopy can improve the clinical usefulness of the capillary refill test. We suggest a more detailed analysis of the course of the capillary refill in healthy volunteers using diffuse reflectance spectroscopy videos and new informatic endpoints.
The capillary refill test was introduced in 1947 to help estimate circulatory status in critically ill patients. Guidelines commonly state that refill should occur within 2 s after releasing 5 s of firm pressure (e.g., by the physician's finger) in the normal healthy supine patient. A slower refill time indicates poor skin perfusion, which can be caused by conditions including sepsis, blood loss, hypoperfusion, and hypothermia. Since its introduction, the clinical usefulness of the test has been debated. Advocates point out its feasibility and simplicity and claim that it can indicate changes in vascular status earlier than changes in vital signs such as heart rate. Critics, on the other hand, stress that the lack of standardization in how the test is performed and the highly subjective nature of the naked eye assessment, as well as the test's susceptibility to ambient factors, markedly lowers the clinical value. The aim of the present work is to describe in detail the course of the refill event and to suggest potentially more objective and exact endpoint values for the capillary refill test using diffuse polarization spectroscopy.
Assessment and triage of the critically ill patient centers on the classical vital signs blood pressure (BP), heart rate (HR), respiratory rate (RR), oxygen saturation, and body temperature1. Changes in these parameters appear relatively late in the course of circulatory deterioration. For instance, in hemorrhage, a decrease in BP will not occur until blood loss becomes moderate to severe2, and HR increase can also be an insensitive and unspecific marker3.
The capillary refill test (CR test) may offer an earlier indication of incipient circulatory collapse, as the refill time is believed to change prior to the vital signs as well as clinical appearance of cold, clammy, and mottled skin1,4,5. The capillary refill test is typically performed by application and then release of a firm blanching pressure to the skin with timing (in seconds) of the return of blood to the blanched area. According to guidelines, refill should occur within 2 seconds after release of 5 seconds of firm pressure (e.g., by the physician's finger) in the normal healthy supine patient6. The rationale for the test is that a slower refill time would indicate poor skin perfusion, possible caused by one of a number of critical events such as sepsis, blood loss, acute heart failure, or hypothermia.
At present, there is no consensus on a state of the art method for performing the CR test6,7,8,9,10. Contentious issues include lack of standardization of the actual blanching maneuver and the dependence on subjective (i.e., naked eye) assessments of the refill endpoint7,9,11. Furthermore, there are indications that gender influences CR time12,13. The temperature, both ambient and skin, is known to affect the capillary refill time, but to what extent is not clear. Lastly, the use of different measurement sites, peripheral or central, is probably a further cause of variability in results with few studies in this area14,15.
In the present work, we used an optical bioengineering system to record the course of return of blood and the subsequent hyperemic response seen during the CR test. The system utilizes diffuse polarization spectroscopy to quantify and describe, in more detail than possible with the naked eye, the time and course of the capillary refill. The system comprises a standard digital camera, fitted with an external light ring with 92 white LEDs, and specially developed software. The lens and the two polarization filters, attached orthogonally in front of the LEDs, block light that has been directly reflected from the skin surface allowing only light that has become depolarized in the tissue to reach the camera. This generates a "sub-epidermal" image of the tissue to a depth of approximately 0.5 mm. The image is divided into its color planes and the red and green content for every pixel is calculated, generating a value which corresponds to the tissue concentration of red blood cells16. In video mode, the temporal resolution of the system is 0.02 s.
The study described here followed the local ethic guidelines and was approved by the regional ethical review board in Linköping (permit number 2015/99-31).
1. Informed Consent and Screening
2. Acclimatization and Equipment Setup
3. Data Acquisition
4. Data Analysis
Filming the course of the capillary refilling generates vast amounts of data not possible to obtain by naked eye assessment. We suggest here new endpoints to further improve the usability of the CR test as an early indicator of deterioration in circulatory status. We call these endpoints: "Baseline," "Blood Zero" (or "BZ"), "Time to Return to Baseline 1" (or "tRtB1"), "Time to Peak" or "Tpk." The "Baseline" value is derived by calculating a mean value of all the values obtained during the 5 s baseline measurement. "Blood Zero" is the mean value gained from the first image of the blanched area immediately after the pressure is released. The definition of "tRtB1" is the time, in seconds, after release of the blanching pressure until the value of the blanched area is equal or above the "baseline" value. "Tpk" corresponds to the time at which the highest value is recorded. Figure 1 shows a selection of the regular photographs and color-coded images from a test performed on the forehead of a healthy male volunteer at room temperature. Figure 2 shows a representative curve from a capillary refill test from the same test as described above. The measurement time in the depicted test was 3 min, a time not applicable in a clinical situation, but illustrating how long it takes before the value is back to the baseline value.
Figure 1: Capillary refill response in a healthy volunteer. A selection of regular photographs (upper row) and correlated color-coded images (lower row) from a capillary refill test performed on the forehead of a healthy male volunteer. (A) shows the forehead prior application of pressure, the blanched area immediately after release of pressure (B), and the hyperemic response (C). Please click here to view a larger version of this figure.
Figure 2: Detailed profile of the capillary refill response with suggested endpoints. The graph shows the course of the capillary refilling, as the change in red blood cell concentration over time, on the forehead of a healthy male volunteer and the new suggested endpoints generated by analysis of diffuse reflectance spectroscopy videos. The "Baseline" value is derived by calculating a mean value of all the values obtained during the 5 s baseline measurement. "Blood Zero" is the mean value gained from the first image of the blanched area immediately after the pressure is released. The definition of "tRtB1" is the time, in seconds, after release of the blanching pressure until the value of the blanched area is equal or above the "baseline" value. "Tpk" corresponds to the time at which the highest value is recorded. Please click here to view a larger version of this figure.
Supplemental Figure 1: Measurement setup and positioning of subject. The figure shows a representative setup for measurement of the CR response on the forehead in a resting, healthy subject. The polarization filters and lead light ring are mounted on a standard digital camera. The camera is attached to a stable tripod with a flexible, 3-way adjustable head allowing for correct positioning. Firm pressure is applied to the measurement area for 5 s by using a standard, plastic teaspoon. Please observe that ambient light should be dimmed to avoid interference with the measurement. Please click here to download this file.
In order to get the best results with the system, variability caused by environmental factors must be controlled. All ambient light must be turned off. The camera must be positioned in vertical alignment with the measurement area. In order to ensure a constant measurement area, subjects should not move or talk during measurement. For the same reason, the camera is preferably mounted on a stand to avoid movement and to maintain a constant distance to the measurement area. Test subjects should avoid caffeine17, tobacco18, and hard exercise19 for at least two h prior to the test and rest for 20 min before the start of measurement, since these factors are known to affect microcirculation. Test subjects should be in a supine position with the measurement site at heart level to avoid positional redistribution of the blood volume. Room temperature and skin temperature should be monitored, as temperature is known to affect the refill time20,21.
There are other bioengineering alternatives to naked eye assessment and the presented technique which could be used to measure the CR test. Most of these techniques utilize changes in polarized or unpolarized light after reflection on the skin22,23,24 . Other techniques measure the change in skin color using a video camera25, which is possibly most similar to the clinical situation. Further, indirect measures of blood flow may be achieved by correlating surface temperature to changes in dermal blood flow26. These alternative techniques are designed to measure a limited area of the skin or are for use only in one anatomical site (e.g., fingers)23,24,25.
With this new system, it is possible to switch between video and still photography and capture a large area, for instance a limb or even the whole body if necessary, with high temporal and spatial resolution. We consequently argue that this is an attractive technique for further physiological and pathophysiological characterization of the capillary refill response.
It should be noted that the camera system and the skin blanching maneuver described and used here are designed for research purposes and are not yet optimized for clinical use. To be fully usable as a method for monitoring critically ill patients, the system needs to be miniaturized and simplified. Ideally, the camera system should be integrated with a device that delivers a standardized blanching pressure and presents a physiologically relevant readout instantaneously. Although we are at an early stage of investigating the basic physiology of the CR response, we believe that most of these challenges can be managed by technological development.
The authors have nothing to disclose.
We would like to extend our gratitude to the Linköping staff of The Swedish Defense Agency (FOI) and the Center for disaster medicine and Traumatology (KMC) for their kind support.
TiVi701 Camera | WheelsBridge AB | TiVi701 Camera, version 1.5.1 | Software |
TiVi700 | WheelsBridge AB | TiVi700 Analysis, version 1.2.9 | Software |
Canon EOS 700D | Canon U.S.A., inc. | Canon EOS 700D | Digital SLR Camera |
Camera stand | Manfrotto | 681B | Modified camera stand to hold the digital camera in position |
Camera stand | Disa Denmark | 9020B | Modified camera stand to hold the digital camera in position |