This work presents a step-by-step protocol for the unbiased stereological estimation of dopaminergic neuronal cell numbers in the mouse substantia nigra using standard microscopy equipment (i.e., a light microscope, a motorized object table (x, y, z plane), and public domain software for digital image analysis.
In pre-clinical Parkinson's disease research, analysis of the nigrostriatal tract, including quantification of dopaminergic neuron loss within the substantia nigra, is essential. To estimate the total dopaminergic neuron number, unbiased stereology using the optical fractionator method is currently considered the gold standard. Because the theory behind the optical fractionator method is complex and because stereology is difficult to achieve without specialized equipment, several commercially available complete stereology systems that include the necessary software do exist, purely for cell counting reasons. Since purchasing a specialized stereology setup is not always feasible, for many reasons, this report describes a method for the stereological estimation of dopaminergic neuronal cell counts using standard microscopy equipment, including a light microscope, a motorized object table (x, y, z plane) with imaging software, and a computer for analysis. A step-by-step explanation is given on how to perform stereological quantification using the optical fractionator method, and pre-programmed files for the calculation of estimated cell counts are provided. To assess the accuracy of this method, a comparison to data obtained from a commercially available stereology apparatus was performed. Comparable cell numbers were found using this protocol and the stereology device, thus demonstrating the precision of this protocol for unbiased stereology.
The quantification of neuronal cell number is pivotal in pre-clinical Parkinson's disease research to determine the level of neurodegeneration within the substantia nigra (SN)1,2. The unbiased stereological estimation of cell number in a region of interest is considered the gold standard3,4,5.
Before the advent of unbiased stereology, the number of neurons in sections was assessed by manipulating counted cell profiles to correct for the variable probabilities that neurons come into sight in a section. One of the most commonly used methods was the correction of quantified cell counts described by Abercrombie6. This method attempted to take into account that cells can be quantified more than once if fragments of the same cell are found in adjacent thin sections. Therefore, Abercrombie and other authors generated equations that required assumptions about the shape, size, and orientation of the counted cells7,8. However, these assumptions were usually not realized and therefore led to systematic errors and divergence from the actual cell number (i.e., bias). Moreover, the bias could not be reduced by additional sampling3.
For the stereological estimation of cell numbers using the optical fractionator, mathematical principles are applied to directly estimate the cell numbers directly in a defined, 3-dimensional volume. The advantage of this method is that it does not involve assumptions about the shape, size, and orientation of the cells being counted. Thus, the estimated cell numbers are closer to the true values and get closer as the sample size increases (i.e., unbiased)3. Because many rules must be followed when using stereology to keep the method unbiased, ready-to-use commercial stereology systems have been developed (for review, see Schmitz and Hof, 20054). Specialized stereology systems implement design-based stereological methods with a priori defined probes and sampling schemes for stereological assessments that lead to independence from shape, size, spatial distribution, and orientation of the cells to be analyzed4,9. However, commercially available stereology systems are expensive; this may limit implementation in new research.
The aim of this study was to develop a usable technique for the design-based stereological estimation of dopaminergic cell counts in the mouse SN, employing the optical fractionator method and using standard microscopy equipment (i.e., light microscope, standard microscope software, and a motorized x, y, z stage). For this, a step-by-step guide on how to process mouse brain tissue and how to estimate SN cell numbers using design-based unbiased stereology is presented. Moreover, templates for the calculation of the estimated cell numbers and coefficients of error (CE) are provided.
The method described here is not limited to the analysis of the SN, but can be adapted for use in other anatomically defined regions of the mouse or rat brain. For instance, unbiased stereology has been used to estimate neuronal cell numbers in the hippocampus10 and the locus coeruleus11. Additionally, cell types other than neurons, such as astrocytes12 and microglia13, can be assessed as well. Therefore, this method can be useful to scientists who intend to implement unbiased stereology in their research but are not willing to spend a lot of money to purchase a stereology system.
All applicable international, national, and/or institutional guidelines for the care and use of animals were followed. The protocol was approved by local authorities at the Regierung von Unterfranken, Wuerzburg, Germany.
1. Tissue Processing and Immunohistochemistry
2. Acquisition of Images
3. Sequence of Stereological Assessment
4. Calculation of Optical Disector Position Using the "Optical Disector Position" Spreadsheet Template
5. Estimation of Cell Number Using the "Calculation of Cell Count" Spreadsheet
6. Estimation of Cell Number Using a Commercially Available Stereology System
Using the presented method, the estimated number of TH+ dopaminergic neurons in the right SN ranged between 7,363 and 7,987 cells and, in the left SN, between 7,446 and 7,904 cells. Thus, the mean number of dopaminergic neurons (± SEM) was 7,647 ± 83 cells for the right SN and 7,675 ± 66 for the left SN. The calculated CE for each animal was lower than 0.08 (range: 0.073-0.079) (Figure 7). To ascertain the comparability of this method with commercially available and specialized stereology systems, SN cell numbers were also quantified using the stereology setup (Figure 8). The counting parameters were: grid size, 130 x 130 µm; counting frame, 50 x 50 µm; guard zone, 3 µm. Sections were analyzed with a 100x/1.25 numerical aperture objective on a BX53 microscope. The estimated population of TH+ SN neurons using the mean section thickness ranged from 7,067 to 8,105 cells/SN and 7,164 to 8,015 cells/SN on the right and left sides, respectively. The mean neuronal number was calculated as 7,535 ± 155 cells for the right SN and 7,699 ± 128 cells for the left SN. The Gundersen CE (m=1) was ≤0.08 in each SN quantified (Figure 7). Statistical analysis using paired Student's t-test did not reveal any significant differences between the TH+ cell counts of the two methods in the right or in the left SN (mean ± SEM; right: t(5)=0.9524, P >0.05; left: t(5)=0.2928, P>0.05) (Figure 7).
Figure 1. Representative images of mouse SN stained for dopaminergic neurons.
(a) An overview of a representative mouse SN is shown in the upper panel. Note the tiny hole in the upper part of the right brainstem that marks the right side. Higher magnification of the inset (black box) depicts TH+ dopaminergic neurons. (b) One series of TH-stained SN sections is shown, covering the whole mouse SN from rostral to caudal. (c) Each section is separated from the consecutive section by 120 µm. Scale bars: a, upper panel, 500 µm; lower panel, large image, 100 µm; lower panel, inset, 50 µm; b, 500 µm. Please click here to view a larger version of this figure.
Figure 2. Acquisition of images for stereological analysis using the imaging software.
(a) Red arrow: open the acquisition window; green arrow: set the binning to "2;" blue arrow: show the live image. (b) A new window showing the live image (red arrow) will open. (c) Red arrow: select the "Stage" menu; green arrow: select the "Scan Slide" option; blue arrow: check the "Scan Slide" option; black arrow: define the upper left corner. (d) Black arrow: define the lower right corner. (e) Red arrow: select the "Z-series" menu; green arrow: check the "Z-Plane series;" blue arrow: start the "View Top Offset" to search for the top of the section. (f) Red arrow: click on "Stop View Top" to define the top of the section; green arrow: start "View Bottom Offset" to search for the bottom of the section. (g) Red arrow: click on "Stop View Bottom" to define the bottom of the section. (h) Red arrow: substract the 3-µm guard zone from the "Top Offset" and insert the result into the "Top Offset" slot. (i) Red arrow: subtract 13 µm from the "Top Offset" number and insert the result into the "Bottom Offset" slot; green arrow: define 14 steps that corresponds to a z-plane thickness of 13 µm; blue arrow: define a size of 1.00 µm that corresponds to a 1-µm distance between consecutive images. (j) Red arrow: select the directory to save the file to; blue arrow: click on "Sequence" to start the acquisition of images. (k) Red arrow: click on "Processing;" check the following parameters: green arrow: "All planes;" blue arrow: "Sequence;" black arrow: "Montage;" gray arrow: "Stitching;" purple arrow: fast. (l) Click on the yellow arrow to start stitching the images. Please click here to download this file.
Figure 3. Processing the images for stereological analysis.
(a) An example stack image taken from a mouse SN. (b and c) After the randomized insertion of a grid overlying the SN (turquoise lines, b), the SN is outlined in a second step (blue line, c). (d) An optical disector is placed into the SN stack image. (e) Six consecutive focal planes within the SN stack image cover 13 µm total in the z-plane. Scale bars: a-d, 100 µm; e, 50 µm. Please click here to view a larger version of this figure.
Figure 4. Sequence of stereological assessment using ImageJ.
(a) Red arrow: click on "File" → "Open" to open a stack image. (b) Red arrow: click on "Analyze" → "Set Scale". (c) Red arrows: define the parameters for the "Distance in pixels," "Known distance," and "Unit of length." (d) Red arrow: select "Plugins" → "Grid." (e) Red arrow: select "Lines;" green arrow: check "Random Offset;" blue arrow: insert the size of the grid in µm2. (f) Red arrow: click on "Image" → "Type" → "RGB Color." (g) Red arrow: select the "Paintbrush Tool;" green arrow: define the "brush width" as 11. (h) Red arrow: start to encircle the SNpc. (i) Red arrows depict the encircled SNpc. (j) Red arrow: click on "Analyze" → "Set Scale" and remove the scale (k) by clicking on "Click to Remove Scale," depicted by the red arrow. Note the change from µm (k, green arrow) to pixels (l, red arrow). (m) Take a screenshot (red arrow points towards the screenshot) and (n) open the screenshot image file with ImageJ. (o) Red arrow: click on "Point." (p) Red arrow: insert a brush width of 25. (q) The red arrow depicts the marked grid-squares that contact the SNpc. (r) The red arrow points at the upper left corner of a grid-square that includes part of the SN. By putting the cursor at this point, the x,y coordinates for the "optical disector position" (step 4) are measured and inserted into the "optical disector position.xlsx" template (s, red arrow). (t) Red arrow: select "Plugins" → "Macros" → "Edit." (u) Red arrow: select the "opt_dis_grid.txt" file. A new window will open (v). Insert the size of the "usergrid," in pixels (v, red arrow), and the x,y coordinates (v, green arrow). (w) Run the "opt_dis_grid.txt" macro (red arrow). (x) An optical disector will appear in the middle of the previously defined grid-square (red arrow). (y) Red arrow: click on "Plugins" → "Cell Counter." (z) Initialize the Cell Counter (red arrow) and select a marker type (green arrow). Please click here to download this file.
Figure 5. Placement of the optical disector.
(a) Illustration of the optical disector used for unbiased stereology. The optical disector is a 3-dimensional cube. Three schematic cells are visible within the optical disector. The stereological rules for the quantification of cells indicate that cells touching the red labeled sides of the optical disector are excluded (red cell), while cells that contact the green labeled sides are included in cell counting (green cells). (b) An optical disector is placed in every grid-square that comes in contact with the SN. Please click here to view a larger version of this figure.
Figure 6. Calculation of the optical disector position and estimation of cell number.
(a) An example calculation performed for the positioning of the optical disector. (b) An example of the estimation of total cell number. The numbers of quantified cells are inserted in the gray boxes, while the parameters of stereological quantification are inserted in the yellow boxes. The estimated cell number and the CE are displayed in the blue boxes. Please click here to view a larger version of this figure.
Figure 7. Comparison of cell counting parameter.
(a) Comparing the estimated TH+ cell number of the right and left mouse SN obtained from the described stereological method with the data acquired from analysis using the commercially available stereology system did not show any significant differences. A detailed list of the obtained data of the right (b) and left (c) SN is given with the estimated cell number per animal, the number of cells actually counted, the number of sections counted, and the number of sampling sites (i.e., the number of grid-squares counted) for both methods. The values in the bar graphs are the mean ± SEM of the data from 6 mice. Please click here to view a larger version of this figure.
Figure 8. Quantification of cells with the commercially available stereology system.
(a-b) The outline of the SN is drawn and (c) the positions of the optical disectors are automatically determined. (d-e) Each optical disector is analyzed for cell number by focusing along the z-plane. Six consecutive focal planes within the SN are shown. The red and green lines correspond to the optical disector. Scale bars: a-d, 100 µm; e, 50 µm. Please click here to view a larger version of this figure.
Supplemental File 1. opt_dis_grid.txt Please click here to download this file.
Supplemental File 2. Optical disector position.xlsx Please click here to download this file.
Supplemental File 3. Calculation of cell count.xlsx Please click here to download this file.
Stereology starts with tissue processing. The serial cutting of SN tissue must be performed carefully to prevent the loss of sections during stereological analysis. Additionally, one essential step is to mark one hemisphere in order to distinguish the right from the left SN when performing stereology. Placing a tiny hole at the upper part of the brainstem generated the best results in the presented study. Moreover, since working with the optical fractionator method demands that the tissue is cut in thick sections of about 30-40 µm, rather than the 5-10 µm more commonly used in immunohistochemistry, antibody and other incubation fluid tissue penetration during immunohistochemical staining must be ensured, such as by using a detergent.
Immunohistochemical staining for dopaminergic neurons using the TH antibody labels SN neurons, as well as neurons within the ventral tegmental area (VTA), which is located medially from the SN, and neurons in the retrorubral field. Thus, another critical point when performing stereology of the SN is knowledge of the mouse SN anatomy, since SN neurons cannot be visualized exclusively by standard immunohistochemical or histological staining. Instead, the recognition of anatomical landmarks, like the subthalamic nucleus, the retrorubral field, and the VTA, are important to determine the whole extent of the SN17,18,19.
Assessment of the neuronal number needs to be reliable and reproducible. Although various groups use commercially available stereology setups, numbers of TH+ dopaminergic SN neurons in wt mice, taken from different publications, vary in number17,20. In Baquet et al., design-based stereological analysis in 3- to 4-month-old male and female C57BL/6J wt mice using a commercially available stereology system revealed an estimated 8,716 ± 338 TH+ dopaminergic SN neurons (range: 7,546-9,869)17. In contrast, Smeyne et al. found fewer TH+ SN cells in 9- to 16-week-old male C57BL/6J mice that received 0.9% saline i.p., ranging from 6,302 ± 262 cells to 6,861 ± 338 cells, using a newer version of the same stereology system20. However, the first author was also the last author in the Baquet et al. paper, therefore excluding varying degrees of experience as the reason for the different results. These contradicting data reflect the need for a stereological quantification method that shows less variability. To verify the technique of quantification and the formula used, a comparison of the results of SN cell number count using the described method with a quantification using the commercially available stereology setup was performed. Statistical analysis did not show any significant differences when comparing the numbers of TH+ dopaminergic neurons in the right and left SN of wt mice determined using both techniques of cell quantification, thus demonstrating that this method is feasible for the stereological estimation of SN neurons in mice.
The main advantage of the described method is that it reduces the costs that are usually associated with the implementation of stereology techniques for cell counting. A second advantage is that, for the described method, stack images of the SN are saved and can be analyzed any time (even at the same time) by another investigator. Moreover, the acquisition and analyses of fluorescence images are possible with this method, because grayscale images can be colored with the "Lookup Tables" in ImageJ. However, there are limitations to this study. First, the quantification of cell number is more time consuming (around 50%) than quantification with the commercially available stereology system. This is mainly because of two reasons: 1. stack images of the SN must be taken and 2. calculation of the optical disector placement within each SN and calculation of the estimated cell number and CE must be performed manually using the calculation templates. Second, at least with the system available in our laboratory, the analysis can only be performed on grayscale images because of the large file size of color images, which could not be processed by ImageJ. This might pose a problem if there is a need to quantify two different cell populations at the same time in a double stain. It could be more difficult to distinguish two differently stained cell populations in grayscale images. Therefore, although a motorized stage (x, y, z plane) and the corresponding software are available in many laboratories working with histological specimens, the management and quality of stack images will depend on the microscope software and the performance of the attached computer.
There are possible ways to overcome the limitations. By using the calculation templates we developed, the programming of macros to automate some of the currently manually performed processes could reduce errors or inaccuracies during stereological assessment and accelerate the speed of work. Additionally, with the ongoing development of ImageJ and other imaging software, as well as with increasing computer processing power, larger image file sizes should not pose a problem in the near future. Therefore, analyses of bright-field color images will be manageable with the described technique.
The technique described is not restricted to analyses of TH+ SN cells, but can be expanded to analyze other cell types and brain regions of rodents. For this, the anatomical borders of the region of interest must be determined, and the respective staining must be performed. Additionally, this technique can be adapted to thicker sections. For this, the acquisition of stack images must be adapted to provide more stack images. For example, if 40 µm-thick section are required, the actual mounted thickness of the section after tissue staining must be assessed to determine the necessary height of the optical disector. Subtract 6 µm (3-µm guard zone at the top and the bottom) from the mean tissue thickness and take the result as the height of the optical disector.
The authors have nothing to disclose.
The authors are grateful to Keali Röhm, Louisa Frieß, and Heike Menzel for their expert technical assistance; to Helga Brünner for the animal care; and to Chistopher S. Ward for the generation and distribution of the optical disector grid plugin for the ImageJ software.
Paxinos mouse atlas | The Mouse Brain George Paxinos Keith B.J.FranklinCopyright @2001 by Academic Press CD Rom designet & created by Paul Halasz | ||
brain matrix slicer mouse | Zivic Instruments | BSMAS 001-1 | |
paraformaldehyde | Merck | 1040051000 | |
sucrose /D(+) Saccharose | Roth | 4621.1 | |
isopentane | Roth | 3927.1 | |
glycerol | Merck | 1040931000 | |
Ethanol | Sigma Aldrich | 32205-1L | |
Name | Company | Catalog Number | Comments |
phosphate buffered saline ingredients: | |||
sodium chloride | Sigma Aldrich | 31434-1KG-R | |
potassium dihydrogen phosphate | Merck | 1048731000 | |
di-sodium hydrogen phosphate dihydrate | Merck | 1065801000 | |
potassium chloride | Merck | 1049360500 | |
normal goat serum | Dako | X0907 | |
bovine serum albumin | Sigma | A4503-100G | |
Triton X-100 | Sigma Aldrich | X100-100ml | detergent |
3,3-Diaminobenzidine-tetrahydrochlorid/DAB tablets 10mg pH 7.0 | Kem En Tec | 4170 | |
H2O2/ Hydrogen peroxide 30% | Merck | 1072090250 | |
avidin/biotin reagent | Thermo Scientific | 32050 | Standard Ultra Sensitive ABC Staining Kit, 1:100 |
rabbit anti mouse tyrosine hydroxylase antibody | abcam | Ab112 | 1:1000 |
biotinylated goat-anti-rabbit IgG H+L | vector laboratories | BA-1000 | 1:100 |
StereoInvestigator version 11.07 | MBF | ||
BX53 microscope | Olympus | ||
Visiview | Visitron Systems GmbH | 3.3.0.2 | |
Axiophot2 | Zeiss | ||
ImageJ software | NIH | Version 4.7 | |
Tissue-TEK OCT | Sakura | 4583 | |
dry ice | |||
grid overlay plugin | Wayne Rasband | https://imagej.nih.gov/ij/plugins/graphic-overlay.html | |
cell counter plugin | Kurt de Vos | https://imagej.nih.gov/ij/plugins/cell-counter.html). | |
optical disector macro | Christopher Ward | ||
C57Bl/6N male mice | Charles River, Germany | ||
SuperFrost Plus coated object slides | Langenbrinck, Germany | ||
25G needle Microlance 3 | BD | 300400 | |
REGLO Analog Infusion pump | Ismatec | ISM 829 | |
StereoInvestigator system | StereoInvestigator version 11.07 | ||
BX53 microscope | BX53 microscope | ||
self-assorted stereology | Visiview | ||
Axiophot2 | Axiophot2 |