We describe a technique for using murine embryonic stem cells for generating two or three dimensional embryoid bodies. We then explain how to induce neural differentiation of the embryoid body cells by retinoic acid, and how to analyze their state of differentiation by progenitor cell marker immunofluorescence and immunoblotting.
Mouse embryonic stem cells (ESCs) isolated from the inner mass of the blastocyst (typically at day E3.5), can be used as in vitro model system for studying early embryonic development. In the absence of leukemia inhibitory factor (LIF), ESCs differentiate by default into neural precursor cells. They can be amassed into a three dimensional (3D) spherical aggregate termed embryoid body (EB) due to its similarity to the early stage embryo. EBs can be seeded on fibronectin-coated coverslips, where they expand by growing two dimensional (2D) extensions, or implanted in 3D collagen matrices where they continue growing as spheroids, and differentiate into the three germ layers: endodermal, mesodermal, and ectodermal. The 3D collagen culture mimics the in vivo environment more closely than the 2D EBs. The 2D EB culture facilitates analysis by immunofluorescence and immunoblotting to track differentiation. We have developed a two-step neural differentiation protocol. In the first step, EBs are generated by the hanging-drop technique, and, simultaneously, are induced to differentiate by exposure to retinoic acid (RA). In the second step, neural differentiation proceeds in a 2D or 3D format in the absence of RA.
ESCs originate from the blastocyst inner cell mass. These cells are pluripotent, i.e. they have the capacity to differentiate into any cell type of the organism of origin. ESC in vitro differentiation is of wide interest as an experimental system for investigating developmental pathways and mechanisms. It offers a potent and flexible model system to test new therapeutic approaches for correction of cell and tissue dysfunction. EBs recapitulate many aspects of cell differentiation during early embryogenesis. In particular, EBs can be used when embryonic lethality makes it difficult to determine the cellular basis of the embryonic defects1,2. EBs can be formed either by the hanging drop or liquid suspension techniques3. The advantage of the former is the ability to generate EBs of consistent size and density, thus facilitating experimental reproducibility.
Interaction with extracellular matrix (ECM) adhesion proteins may affect the motility and survival of adherent cells. In the 2D culture system, fibronectin is often applied to increase cell adhesion to the substrate. Fibronectin is a basal lamina component recognized by 10 types of cell-surface integrin heterodimers4.
RA is a small lipophilic metabolite of vitamin A that induces neural differentiation5,6. High concentrations of RA promote neural gene expression and represses mesodermal gene expression during EB formation7,8. RA is produced by vitamin A oxidation to retinaldehyde by either alcohol or retinol dehydrogenase, followed by retinaldehyde oxidation to the final product by retinaldehyde dehydrogenase9. Neural differentiation requires transport of RA from the cytoplasm to the nucleus by cellular RA-binding protein 2 (CRABP2). In the nucleus, RA binds to its cognate receptor complex consisting of a RAR-RXR heterodimer10. This results in recruitment of transcriptional co-activators, and the initiation of transcription9,11. Furthermore, RA promotes the degradation of phosphorylated (active) SMAD1, thus antagonizing BMP and SMAD signaling12. In addition to these activities, RA increases Pax6 expression, a transcription factor that supports neural differentiation13. RA signaling is modulated by sirtuin-1 (Sirt1), a nuclear nicotinamide adenine dinucleotide (NAD+)-dependent enzyme that deacetylates CRABP2, interfering with its translocation to the nucleus, and hence with RA binding to the RAR-RXR heterodimer14,15,16.
Our goal in designing the RA-treated EB protocol described here is to optimize neural differentiation in order to facilitate in vitro analysis of the signaling pathways that regulate ESC differentiation into neuronal precursor cells. One of the advantages of this protocol is facilitation of the analysis of cell function by immunofluorescence. 3D EBs are not well penetrated by antibodies and are difficult to image. EB dissociation into a 2D monolayer at specific time points during neural differentiation facilitates immunolabeling and imaging of the cells by confocal microscopy.
1. Culture of Mouse Embryonic Fibroblasts (MEFs)
2. Mouse ESC Culture
3. Withdraw MEFs and Culture ESCs on Gelatin-coated Plates
4. EB Formation
5. 2D EB Culture
6. Detection of Secreted Proteins
7. 3D EB Culture
8. EB Dissociation
9. Transfection of Dissociated EBs
10. Analysis of EB Differentiation by Immunofluorescence
Oct4, Nanog, and SOX2 are the core transcription factors that confer ESC self-renewal and pluripotency. We applied the above protocol to compare the neural differentiation of ESCs from wild type and from a strain of genetically-modified mice where Syx, a gene coding for the RhoA-specific exchange factor Syx, is disrupted. We had implicated Syx in angiogenesis18. We noticed differences in the behaviors of EBs aggregated from Syx+/+ and Syx-/- ESCs, and proceeded to test if the neural differentiation of Syx-/- ESCs is faster than that of their Syx+/+ counterparts.
To compare the initial state of Syx+/+ and Syx-/- ESCs, we quantified in each genotype the abundances of Oct4, Nanog, and SOX2, the core transcription factors that confer ESC self-renewal and pluripotency. As described in step 10 of the protocol, ESCs were immunolabeled by Oct4, Sox2, and Nanog antibodies. The abundances of the 3 transcription factors in Syx+/+ and Syx-/- ESCs were similar, as determined by immunofluorescence (Figure 2) and immunoblotting17 (Figure 2).
EBs implanted in a 3D collagen matrix (Figure 1B) start sprouting cellular extensions that are visible on a cell culture microscope with a 10X objective, 2 days after implantation. On day 6, between 5 to 10 sprouts of 200 µm or less can be normally observed in Syx+/+ EBs, whereas in Syx-/- EBs, 30-50 sprouts are frequently observed, the majority of which are longer than 200 µm, (Figure 1C).
We observed that cells extended faster from Syx-/- than from Syx+/+ 2D EBs (Figure 3A). To compare the rate of neural differentiation of the cells that extended from the Syx+/+ and Syx-/- EBs, we immunolabeled them after 6 days of 2D culture by the neural stem cell marker nestin, an intermediate filament regulatory protein19. Nestin's abundance was substantially higher in cells extending from Syx-/- EBs (Figure 3B). We then compared the abundance of nestin and tubulin β3 (Tubβ3), an axonal cytoskeleton protein20, in cells dissociated from 13-day 2D EBs. Both proteins were more abundant in cells dissociated from Syx-/- EBs than in their Syx+/+ counterparts (Figure 3C). We obtained similar results by quantification of immunoblotting of the same proteins17.
Figure 4 shows cells transfected by constitutively green fluorescent protein (GFP)-fused active RhoA (RhoA-Q63L) using a stem-cell-optimal transfection reagent (see Materials/Equipment Table).
Figure 1: Sprout Emergence from Syx+/+ and Syx-/- EBS in 3D Culture. (A) Syx+/+ and Syx-/- ESCs grew in clustered colonies before the induction of neural differentiation. (B and C) images of EBs formed in hanging drops with 0.5 µM RA, and then inserted into a 3D collagen matrix without RA, as described in steps 7.1-7.4. Images were captured on day 6 by the indicated objectives (Scale bars = 100 µm in A and C, 200 µm in B). Please click here to view a larger version of this figure.
Figure 2: Presence of Pluripotency Core Transcription Factors. Representative images showing the abundances of the indicated core pluripotency markers in Syx+/+ and Syx-/- ESCs (Scale bar = 50 µm). See Yang et al.17 for details of the immunolabeling method (Scale bar = 50 µm; DAPI, 2-(4-amidinophenyl)-1H -indole-6-carboxamidine). Please click here to view a larger version of this figure.
Figure 3: Visualization of Neural Differentiation Markers in EB Cells. (A) Phase images of 2D EB edges showing that cells expanded faster from Syx-/- than from Syx+/+ EBs (Scale bar = 200 µm). (B) Immunofluorescence images showing that the neural differentiation marker nestin was more abundant in cells expanding from 6 day 2D Syx-/- EBs than from their Syx+/+ counterparts (Scale bar = 50 µm). (C) Immunofluorescence images showing that the neural differentiation markers nestin and Tubβ3 were more abundant in cells dissociated from 13 day 3D Syx-/- EBs than from their Syx+/+ counterparts (Scale bar = 50 µm). Please click here to view a larger version of this figure.
Figure 4: Visualization of the Efficiency of the Transfection Reagent. Three replicates of immunofluorescence images showing ESCs transfected by constitutively active RhoA fused to GFP to illustrate the transfection efficiency of the reagent used in step 9.5 of the protocol (Scale bar = 50 µm). Please click here to view a larger version of this figure.
In this protocol we present a relatively simple and accessible method to study neural differentiation of murine ESCs. In previous protocols, RA was added to the medium at day 2 or day 4 of the EB hanging-drop8 or by suspension culture7, respectively, or immediately after the EB hanging drop aggregation21. In the protocol we devised, RA was added earlier. Despite the earlier introduction of RA to EBs formed by suspension culture, this protocol produced higher expression of neural differentiation markers8.
Here, we favored applying RA and inducing neural differentiation at the start of the hanging drop culture. This modification allows equal RA exposure to the ESCs when they are still in a single cell suspension, before EB aggregation. When RA is added to aggregated EBs, cells in the EB inner mass are likely to sense a lower to RA concentration than cells in the outer layer. Application of RA at the start of EB aggregation is advantageous also because it suppresses endodermal and mesodermal germ layer development in favor of neural differentiation of the ectodermal layer7,8. We confirmed that RA treatment promoted neural differentiation by examining the abundance of close to 10 markers17.
There are three critical considerations in this protocol. The first is maximum removal of the MEF feeder cells to achieve a high purity ESC population. The second is the light sensitivity of RA: its stock solution and the hanging drops must be protected from light after RA application. RA stock solution is stable only for two weeks, after which a fresh solution must be prepared. The third consideration is the RA concentration. In our pilot experiments, we found that at a concentration of 10 µM RA retarded cell growth and produced smaller-sized EBs compared to lower concentrations, possibly because RA can cause apoptosis at high conncentrations22,23,24. We observed that a RA concentration of 0.5 µM produced a larger number of well-formed EBs than at either higher25 or lower concentrations, and that the EBs reached an average diameter of around 200 µm. Larger EBs exceed the field size of a 10X objective and were, consequently, harder to image. Therefore, we chose 0.5 µM as optimal RA concentration.
Analysis by immunofluorescence of 3D EBs is problematic because they are too brittle for frozen sectioning. Furthermore, we found that frozen EB sections do not stick well to uncoated electrostatically-treated glass slides. Preparation of 2D EB culture requires aggregation of extra hanging drops, because some EBs do not attach well to the substrate. EB dissociation, which is relatively slow, can be accelerated by pipetting the EBs up and down in a 1.5 mL microfuge tube during their incubation with collagenase.
Neurally differentiated ESCs can be used to replace damaged endogenous cells, e.g. dopaminergic neurons lost in the substantia nigra in the brain of patients suffering from Parkinson's disease26. While current techniques of human ESC differentiation do not require EB formation (ibid.), EBs are still a useful tool for detailed analysis of neural differentiation at the molecular level.
The authors have nothing to disclose.
This study was supported by NIH grant R01 HL119984 to A.H.
Materials | |||
MEFs | EMD Millipore | PMEF-CF | ESC feeder layer |
ESC | EMD Millipore | CMTI-2 | |
Cell culture dish (60 mm) | Eppendorf | 30701119 | Cell culture |
Cell culture dish (100 mm) | Falcon | 353003 | Cell culture |
Petri dish (100 mm) | Corning | 351029 | Hanging drops |
24-well plate | Greiner Bio-One | 662160 | 2D EBs |
6-well plate | Eppendorf | 30720113 | Transfection |
Dark 1.5 ml centrifuge tube | Celltreat Scientific Products | 229437 | RA stock solution |
Microscope cover-glass | Fisherbrand | 12-545-80 | Circular, 12 mm diameter |
Superfrost-plus microscope slides | Fisherbrand | 12-550-15 | |
3D collagen culture kit | EMD Millipore | ECM675 | 3D culture |
Effectene Transfection Reagent | Qiagen | 301427 | Stem cell transfection |
Microcon Centrifugal Filters (10 kDa) | EMD Millipore | MRCPRT010 | Protein concentration |
Name | Company | Catalog Number | Comments |
Reagents | |||
DMEM | Lonza | 12-709F | MEFs culture |
IMDM | Gibco | 12440-046 | ESCs culture |
Fetal bovine serum (FBS) | EMD Millipore | ES-009-B | ESCs culture |
Gelatin | Sigma-Aldrich | G2625 | Dish coating |
LIF | R&D Systems | 8878-LF-025 | To maintain ESC pluripotency |
MEM Non-Essential Amino Acids Solutions | Gibco | 11140050 | Cell culture |
2-Mercaptoethanol | Gibco | 21985023 | Cell culture |
Penicillin-Streptomycin | Gibco | 15140122 | Cell culture |
Gentamicin | Gibco | 15750060 | Cell culture |
MycoZap Plus-PR | Lonza | VZA-2022 | Cell culture |
0.25% Trypsin-EDTA | Gibco | 25200-072 | Cell culture |
DMSO | Sigma-Aldrich | D2650 | |
All-trans-retinoic acid | Sigma-Aldrich | R2625-50MG | Induction of neural differentiation |
Bovine Serum Albumin | Sigma-Aldrich | A7030-50G | Blocking and antibody dilution |
Triton X-100 | Sigma-Aldrich | T8787-100ML | Cell membrane permeabilization |
Cell strainer | Corning | 352360 | |
Prolong Gold anti-fade reagent with DAPI | Life Tech. | P36931 | Mounting reagent |
16% Paraformaldehyde | Electron Microscopy Sciences | 15710 | Cell fixation |
Fibronectin | R&D Systems | 1030-FN | Dish coating |
PBS | Gibco | 10010049 | |
Collagenase type I | Worthington Biochem. Corp | LS004196 | EB dissociation |
Name | Company | Catalog Number | Comments |
Primary Antibodies | |||
Nestin (Rat-401) | Santa Cruz Biotech | sc-33677 | Detection of neural differentiation |
Oct4 | Santa Cruz Biotech | sc-5279 | Detection of neural differentiation |
Nanog | Bethyl Laboratories | A300-398A | Detection of neural differentiation |
Sox2 | Cell Signaling | 3579 | Detection of neural differentiation |
Tubulin b3 (AA10) | Santa Cruz Biotech | sc-80016 | Detection of neural differentiation |
Name | Company | Catalog Number | Comments |
Secondary Antibodies | |||
Donkey anti-Mouse-Alexa555 | Life Tech. | A31570 | Immunofluorescence |
Donkey anti-mouse-Alexa488 | Life Tech. | A21202 | Immunofluorescence |
Name | Company | Catalog Number | Comments |
Instruments | |||
Wide-field microscope | Nikon | Eclipse TS100 | Cell culture imaging |
Confocal microscope | Nikon | C2 | Immunofluorescence imaging |