We describe the construction of a rapid continuous-wave-stimulated-Brillouin-scattering (CW-SBS) spectrometer. The spectrometer employs single-frequency diode-lasers and an atomic vapor notch-filter to acquire transmission spectra of turbid/non-turbid samples with high spectral-resolution at speeds up to 100-fold faster than those of existing CW-SBS spectrometers. This improvement enables high-speed Brillouin material analysis.
Recent years have witnessed a significant increase in the use of spontaneous Brillouin spectrometers for non-contact analysis of soft matter, such as aqueous solutions and biomaterials, with fast acquisition times. Here, we discuss the assembly and operation of a Brillouin spectrometer that uses stimulated Brillouin scattering (SBS) to measure stimulated Brillouin gain (SBG) spectra of water and lipid emulsion-based tissue-like samples in transmission mode with <10 MHz spectral-resolution and <35 MHz Brillouin-shift measurement precision at <100 ms. The spectrometer consists of two nearly counter-propagating continuous-wave (CW) narrow-linewidth lasers at 780 nm whose frequency detuning is scanned through the material Brillouin shift. By using an ultra-narrowband hot rubidium-85 vapor notch filter and a phase-sensitive detector, the signal-to-noise-ratio of the SBG signal is significantly enhanced compared to that obtained with existing CW-SBS spectrometers. This improvement enables measurement of SBG spectra with up to 100-fold faster acquisition times, thereby facilitating high spectral-resolution and high-precision Brillouin analysis of soft materials at high speed.
Spontaneous Brillouin spectroscopy has been established, in recent years, as a valuable approach for the mechanical analysis of soft materials, such as liquids, real tissue, tissue phantoms and biological cells1,2,3,4,5,6,7. In this approach, a single laser illuminates the sample and light that is inelastically scattered from spontaneous thermal acoustic waves in the medium is collected by a spectrometer, providing useful information on the viscoelastic properties of the sample. The spontaneous Brillouin spectrum includes two Brillouin peaks at the acoustic Stokes and anti-Stokes resonances of the material, and a Rayleigh peak at the illuminating laser frequency (due to elastically scattered light). For a Brillouin backscattering geometry, the Brillouin frequencies are shifted by several GHz from the illuminating laser frequency and have spectral width of hundreds of MHz.
While scanning Fabry-Perot spectrometers have been the systems-of-choice for acquiring spontaneous Brillouin spectra in soft matter1,2, recent technological advances in virtually imaged phase array (VIPA) spectrometers have enabled significantly faster (sub-second) Brillouin measurements with adequate spectral-resolution (sub-GHz)3,4,5,6,7. In this protocol, we present the construction of a different, high-speed, high spectral-resolution, accurate Brillouin spectrometer based on the detection of continuous-wave-stimulated-Brillouin-scattering (CW-SBS) light from non-turbid and turbid samples in a nearly back scattering geometry.
In CW-SBS spectroscopy, continuous-wave (CW) pump and probe lasers, slightly detuned in frequency, overlap in a sample to stimulate acoustic waves. When the frequency difference between the pump and probe beams matches a specific acoustic resonance of the material, amplification or deamplification of the probe signal is provided by stimulated Brillouin gain or loss (SBG/SBL) processes, respectively; otherwise, no SBS (de)amplification occurs8,9,10,11. Thus, an SBG (SBL) spectrum can be acquired by scanning the frequency difference between the lasers across the material Brillouin resonances and detecting the increase (decrease), or gain (loss), in the probe intensity due to SBS. Unlike in spontaneous Brillouin scattering, elastic scattering background is inherently absent in SBS, enabling excellent Brillouin contrast in both turbid and non-turbid samples without any need for Rayleigh rejection filters as required in VIPA spectrometers10,11,13.
The main building blocks of a CW-SBS spectrometer are the pump and probe lasers and the stimulated Brillouin gain/loss detector. For high spectral-resolution, high speed CW-SBS spectroscopy, the lasers need to be single-frequency (< 10 MHz linewidth) with sufficiently wide wavelength tunability (20 – 30 GHz) and scanning rate (> 200 GHz/s), long-term frequency stability (<50 MHz/h) and low intensity noise. Furthermore, linearly polarized and diffraction-limited laser beams with powers of few hundreds (tens) of mW on the sample are required for the pump (probe) beam. Finally, the stimulated Brillouin gain/loss detector should be designed to reliably detect weak backward stimulated Brillouin gain/loss (SBG/SBL) levels (10-5 – 10-6) in soft matter. To meet these needs, we selected distributed feedback (DFB) diode lasers coupled to polarization-maintaining fibers along with a stimulated Brillouin gain/loss detector combining an ultra-narrowband atomic vapor notch-filter and a high-frequency single-modulation lock-in amplifier as illustrated in Figure 1. This detection scheme doubles the intensity of the SBG signal while significantly reducing noise in the probe intensity, where the desired SBG signal is embedded11. Note that the role of the atomic vapor notch-filter used in our SBS spectrometer is to significantly reduce the detection of unwanted stray pump reflections rather than to decrease the elastic scattering background as in VIPA spectrometers that detect both spontaneous Rayleigh and Brillouin scattered light. Using the protocol detailed below, a CW-SBS spectrometer can be constructed with the capability of acquiring transmission spectra of water and tissue phantoms with SBG levels as low as 10-6 at <35 MHz Brillouin-shift measurement precision and within 100 ms or less.
Figure 1: Continuous-wave Stimulated Brillouin Scattering (CW-SBS) Spectrometer. Two continuous-wave pump and probe diode lasers (DL), frequency detuned around the Brillouin shift of the sample, are coupled into polarization-maintaining single-mode fibers with collimators C1 and C2, respectively. The pump-probe frequency difference is measured by detecting the beat frequency between beams peeled from the pump and probe lasers using a set of fiber splitters (FS), a fast photodetector (FPD), and a frequency counter (FC). The S-polarized probe beam (light red), expanded using a Keplerian beam expander (L1 and L2), is right circularly polarized by a quarter-wave plate (λ1/4) and focused on the sample (S) by an achromatic lens (L3). For effective SBS interaction and optical isolation, the pump beam (deep red), expanded using a Keplerian beam expander (L5 and L6), is first P-polarized using a half-wave plate λ2/4), then transmitted through a polarizing beam splitter (PBS), and is finally left circularly polarized by a quarter-wave plate (λ2/4) and focused on the sample with an achromatic lens (L4; same as L3). Note that the pump and probe beams nearly counter-propagate in the sample and that an S-oriented polarizer (P) was used to prevent the P-polarized pump beam (coming out of λ1/4) from entering the probe laser. For lock-in detection, the pump beam is sinusoidally modulated at fm with an acousto-optical modulator (AOM). The SBG signal, manifested as intensity variations at frequency fm (see inset), is demodulated with a lock-in amplifier (LIA) following detection by a large-area photodiode (PD). For significant elimination of stray pump reflections in the photodiode, a narrowband Bragg filter (BF) and an atomic notch filter (85RB) around the pump wavelength are used alongside with a light-blocking iris (I). Data is recorded by a data acquisition card (DAQ) connected to a personal computer (PC) for further analysis of the Brillouin spectrum. All folding mirrors (M1-M6) are used to fit the spectrometer on a 18''×24'' breadboard that is vertically mounted on the optical table for facilitating placement of watery samples. Please click here to view a larger version of this figure.
Note: Unless stated otherwise, (i) connect all mounts to post holders and tighten the post bases with a clamping fork or mounting base to the optical table, and (ii) use output laser powers of 2 – 10 mW for all alignment procedures.
Note: Turn on all electrical/optoelectronic devices in the setup and allow 30 min of warmup time prior to use.
1. Prepare the Probe Beam Optical Path
2. Prepare the Pump Beam Optical Path
3. Prepare the Scheme for Detecting the Frequency Detuning of the Pump and Probe Lasers
4. Set Up the Stimulated Brillouin Gain/Loss Detector
5. Final Preparations of the System and Performance Optimization
6. Measure and Analyze an SBG Spectrum
Figures 2b and 3b display typical point SBG spectra of distilled water and lipid-emulsion tissue phantom samples (with 2.25 scattering events and an attenuation coefficient of 45 cm-1) measured within 10 ms and 100 ms, respectively. For comparison, we measured the SBG spectra in 10 s as shown in Figures 2a and 3a. In these measurements, the rubidium-85 vapor cell was heated to 90 °C for attenuating stray pump reflections by ~104 and transmitting >95% of probe light; levels that were maintained stable for over an h11. Also, the spatial resolution, defined here as the lateral full-width at half-maximum of the SBS intensity detected from the focus, was estimated to be approximately 8 µm10. The mean Brillouin shifts obtained from the rapidly acquired spectra in water and tissue phantoms were 5.08 GHz and 5.11 GHz, respectively. These Brillouin shift estimates are comparable to those calculated from spectra recorded in 10 s and to previously published Brillouin data of aqueous samples9,10,11. The insets in the figures show histograms of the Brillouin shift estimates retrieved from 200 successive measurements of SBG spectra. The precision of the obtained Brillouin shift was evaluated in terms of the standard deviation of a Gaussian distribution fit to the observed Brillouin shift distribution. Standard deviations of 8.5 MHz and 33 MHz were obtained in the water and tissue phantom samples, representing a high measurement precision for detecting subtle changes in material mechanics. Although the pump power level used here was high (~250 – 270 mW), heating due to absorption of water at 780 nm was estimated to be <0.53 K, and thus can be neglected in the aqueous samples used in this work10. Moreover, no short-term instability of the SBG spectra of the water and lipid-emulsion samples was observed during 120 s of continuous exposure of the samples to these power levels.
Figure 2: Stimulated Brillouin gain (SBG) Spectra of Water. Representative SBG spectra of water acquired in (a) 10 s and (b) 10 ms. Dots and solid lines stand for measurement values and Lorentzian fits, respectively. Insets show corresponding histograms of Brillouin shift estimates of water. Please click here to view a larger version of this figure.
Figure 3: Stimulated Brillouin gain (SBG) Spectra of Tissue Phantoms. Representative SBG spectra of lipid-emulsion tissue phantoms (with 2.25 scattering events and an attenuation coefficient of 45 cm-1) acquired in (a) 10 s and (b) 100 ms. Dots and solid lines denote measurement values and Lorentzian fits, respectively. Insets show corresponding histograms of Brillouin shift estimates of the tissue phantom. Please click here to view a larger version of this figure.
The system, shown in Figure 1, was designed to be built on an 18'' x 24'' breadboard that can be mounted vertically on an optical table, facilitating placement of watery samples. As a result, it is important to strongly tighten all optical and mechanical elements and ensure that the pump and probe beams are collinear and concentric with the various elements prior to illuminating the sample in off-axis geometry.
Difficulties in observing the stimulated Brillouin gain signal may occur due to excessive stray pump reflections that mask the weak Brillouin gain of watery samples (~10-6). To address these possible difficulties, ensure first that the chamber is positioned at the joint focus point of the probe and pump focusing lenses (L3 and L4, respectively). Then, close slightly the iris (I) placed before the rubidium cell and/or translate slightly the folding mirror of the pump beam (M6) to further eliminate detection of stray pump reflections. Note that these procedures will also decrease the Brillouin signal, but may provide a better starting point for detecting the stimulated Brillouin gain signal in water. If the signal is still not detected, use methanol or carbon disulfide, which have a significantly stronger Brillouin gain than water8,10. Alternatively, for measurements of non-turbid samples, it is possible to use thicker glass chambers (ten times the confocal parameter of L3/L4) that significantly reduce detection of stray pump reflections.
In the protocol, we described high-speed measurements of stimulated Brillouin gain spectra over 2 GHz. To extend the measurements over a larger bandwidth (for example, in samples with multiple Brillouin frequency shifts separated by >1 GHz), it is essential to produce a calibration curve of the probe modulation current against the extended frequency detuning range of the pump and probe lasers. Desirably, this curve should be corrected for the small nonlinearity of the laser frequency sweep with modulation current. Alternatively, schemes for rapid monitoring of the pump-probe frequency detuning can be integrated to replace the microwave frequency counter (FC) in the spectrometer.
The Brillouin frequency shift and linewidth measured by the setup proposed here can be converted to the material complex longitudinal modulus at GHz frequencies for a known density and refractive index of the sample4. As in spontaneous Brillouin spectroscopy, other elements of the material stiffness tensor (e.g., shear modulus) could be probed using SBS spectroscopy by detecting light scattered at different angels and polarization states from the pump light. The Brillouin spectrum would then exhibit lower signal-to-noise-ratio (due to the smaller crossing efficiency of the pump and probe beams in the sample10,11,12) and smaller Brillouin frequency shifts and linewidths (due to the reduced crossing angle) than those obtained in the nearly backscattering geometry. Consequently, the use of longer measurement times and lasers with narrower linewidths would be required.
For measurements of Brillouin spectra in non-turbid samples, our current SBS spectrometer provides acquisition times that are comparable to those obtained by VIPA spectrometers4 and that are 100-fold faster than those achieved by existing continuous-wave stimulated Brillouin scattering spectrometers (with similar Brillouin shift sensitivity)9,10,11. For Brillouin measurements in turbid media, our instrument is able to acquire Brillouin spectra of turbid samples with 2.25 scattering events in a time as short as 100 ms, which is 3-fold faster than that used by a VIPA spectrometer with a multipass Fabry-Perot-based Rayleigh rejection filter in turbid samples with 0.13 – 1.33 scattering events13. Unlike VIPA spectrometers, SBS spectrometers does not require any specialized Rayleigh rejection filters, and inherently provides excellent contrast, even in turbid samples with strong elastic scattering10,11.
The current SBS spectrometer has not yet reached the shot-noise limit. The spectrometer noise is dominated by intensity noise in non-turbid samples and by electrical noise in turbid media11. As a result, the signal-to-noise-ratio (and hence the acquisition time) of the SBG signal is limited. To overcome this limitation, a low-noise electrical amplifier prior to lock-in detection could be used to further reduce the acquisition time of SBG spectra in scattering materials without decreasing the Brillouin shift sensitivity11. In addition, the use of shot-noise-limited laser sources with higher rejection of stray pump light in a true backscattering geometry would optimally increase the signal-to-noise-ratio of the spectrometer, allowing shorter times for recording SBG spectra with high Brillouin shift sensitivity11.
The authors have nothing to disclose.
IR is grateful to the Azrieli Foundation for the PhD fellowship award.
Probe diode laser head and controller | Toptica Photonics | SYST DL-100-DFB | Quantity: 1 |
Pump amplified diode laser and controller | Toptica Photonics | SYST TA-pro-DFB | Quantity: 1 |
FC/APC fiber dock | Toptica Photonics | FiberDock | Quantity: 3 |
High power single mode polarization maintaining FC/APC fiber patchcord | Toptica Photonics | OE-000796 | Quantity: 1 |
FC/APC fiber collimation with adjustable collimation optics | Toptica Photonics | FiberOut | Quantity: 1 |
FC/APC fiber fixed collimator | OZ Optics | HPUCO-33A-780-P-6.1-AS | Quantity: 1 |
Single mode polarization maintaining fiber splitter 33:67 | OZ Optics | FOBS-12P-111-4/125-PPP-780-67/33-40-3A3A3A-3-1 | Quantity: 1 |
Single mode polarization maintaining fiber splitter 50:50 | OZ Optics | FOBS-12P-111-4/125-PPP-780-50/50-40-3S3A3A-3-1 | Quantity: 1 |
f=25 mm, Ø1/2" Achromatic Doublet, SM05-Threaded Mount, ARC: 650-1050 nm | Thorlabs | AC127-025-B-ML | Quantity: 1 |
f=30 mm, Ø1" Achromatic Doublet, SM1-Threaded Mount, ARC: 650-1050 nm | Thorlabs | AC254-30-B-ML | Quantity: 2 |
f=50 mm, Ø1" Achromatic Doublet, SM1-Threaded Mount, ARC: 650-1050 nm | Thorlabs | AC254-50-B-ML | Quantity: 1 |
f=100 mm, Ø1" Achromatic Doublet, SM1-Threaded Mount, ARC: 650-1050 nm | Thorlabs | AC254-100-B-ML | Quantity: 1 |
f=200 mm, Ø1" Achromatic Doublet, SM1-Threaded Mount, ARC: 650-1050 nm | Thorlabs | AC254-200-B-ML | Quantity: 1 |
Ø1/2" Broadband Dielectric Mirror, 750-1100 nm | Thorlabs | BB05-E03 | Quantity: 4 |
Ø1" Broadband Dielectric Mirror, 750-1100 nm | Thorlabs | BB1-E03 | Quantity: 2 |
1" Polarizing beamsplitter cube, 780 nm | Thorlabs | PBS25-780 | Quantity: 1 |
Ø1" Linear polarizer with N-BK7 protective windows, 600-1100 nm | Thorlabs | LPNIRE100-B | Quantity: 1 |
Shearing Interferometer with a 1-3 mm Beam Diameter Shear Plate | Thorlabs | SI035 | Quantity: 1 |
6-Axis Locking kinematic optic mount | Thorlabs | K6XS | Quantity: 4 |
Compact five-axis platform | Thorlabs | PY005 | Quantity: 1 |
Pedestal mounting adapter for 5-axis platform | Thorlabs | PY005A2 | Quantity: 1 |
Polaris low drift Ø1/2" kinematic mirror mount, 3 adjusters | Thorlabs | POLARIS-K05 | Quantity: 4 |
Lens mount for Ø1" optics | Thorlabs | LMR1 | Quantity: 5 |
Adapter with external SM1 threads and Internal SM05 threads, 0.40" thick | Thorlabs | SM1A6T | Quantity: 1 |
Rotation mount for Ø1" optics | Thorlabs | RSP1 | Quantity: 2 |
1" Kinematic prism mount | Thorlabs | KM100PM | Quantity: 1 |
Graduated ring-activated SM1 iris diaphragm | Thorlabs | SM1D12C | Quantity: 1 |
Post-mounted iris diaphragm, Ø12.0 mm max aperture | Thorlabs | ID12 | Quantity: 2 |
1/2" translation stage with standard micrometer | Thorlabs | MT1 | Quantity: 3 |
Ø1" Pedestal pillar post, 8-32 taps, L = 1" | Thorlabs | RS1P8E | Quantity: 1 |
Ø1" Pedestal pillar post, 8-32 taps, L = 1.5" | Thorlabs | RS1.5P8E | Quantity: 2 |
Ø1" Pedestal pillar post, 8-32 taps, L = 2" | Thorlabs | RS2P8E | Quantity: 4 |
Ø1" Pedestal pillar post, 8-32 taps, L = 2.5" | Thorlabs | RS2.5P8E | Quantity: 1 |
Ø1" Pedestal pillar post, 8-32 taps, L = 3" | Thorlabs | RS3P8E | Quantity: 4 |
Short clamping fork | Thorlabs | CF125 | Quantity: 12 |
Mounting base | Thorlabs | BA1S | Quantity: 8 |
Large V-Clamp with PM4 Clamping Arm, 2.5" Long, Imperial | Thorlabs | VC3C | Quantity: 1 |
Ø1/2" Post holder, spring-loaded hex-locking thumbscrew, L = 1" | Thorlabs | PH1 | Quantity: 2 |
Ø1/2" Post holder, spring-loaded hex-locking thumbscrew, L = 1.5" | Thorlabs | PH1.5 | Quantity: 2 |
Ø1/2" Post holder, spring-loaded hex-locking thumbscrew, L = 2" | Thorlabs | PH2 | Quantity: 6 |
Ø1/2" Optical post, SS, 8-32 setscrew, 1/4"-20 tap, L = 1" | Thorlabs | TR1 | Quantity: 2 |
Ø1/2" Optical post, SS, 8-32 setscrew, 1/4"-20 tap, L = 1.5" | Thorlabs | TR1.5 | Quantity: 2 |
Ø1/2" Optical post, SS, 8-32 setscrew, 1/4"-20 tap, L = 2" | Thorlabs | TR2 | Quantity: 6 |
Aluminum breadboard 18" x 24" x 1/2", 1/4"-20 taps | Thorlabs | MB1824 | Quantity: 1 |
12" Vertical bracket for breadboards, 1/4"-20 holes, 1 piece | Thorlabs | VB01 | Quantity: 2 |
Si photodiode, 40 ns Rise time, 400 – 1100 nm, 10 mm x 10 mm active area | Thorlabs | FDS1010 | Quantity: 1 |
Waveplate, zero order, 1/4 wave 780nm | Tower Optics | Z-17.5-A-.250-B-780 | Quantity: 2 |
Waveplate, zero order, 1/2 wave 780nm | Tower Optics | Z-17.5-A-.500-B-780 | Quantity: 1 |
Fiber coupled ultra high speed photodetector | Newport | 1434 | Quantity: 1 |
Gimbal optical miror mount | Newport | U100-G2H ULTIMA | Quantity: 3 |
linear stage with 25 mm travel range | Newport | M-423 | Quantity: 1 |
Lockable differential micrometer, 25 mm coarse, 0.2 mm fine,11 lb. load | Newport | DM-25L | Quantity: 1 |
XYZ Motor linear stage | Applied Scientific Instrumentation | LS-50 | Quantity: 3 |
Stage controller | Applied Scientific Instrumentation | MS-2000 | Quantity: 1 |
Sample holder | Home made | Custom | Quantity: 1 |
Rubidium 85 Fused Silica spectroscopy cell with flat AR-coated windows, 150 mm length, 25mm diameter | Photonics Technologies | SC-RB85-25×150-Q-AR | Quantity: 1 |
Thermally conductive pad 300 mm x 300 mm | BERGQUIST | Q3AC 300MMX300MM SHEET | Quantity: 1 |
Heat tape 0.15 mm x 2.5 mm x 5 m, 4.29 W/m | KANTHAL | 8908271 | Quantity: 1 |
Polytetrafluoroethylene tape 1/2'' x 12 m | Teflon tape | R.G.D | Quantity: 1 |
Reflecting Bragg grating bandpass filter | OptiGrate | SPC-780 | Quantity: 1 |
High frequncy aousto optic modulator | Gooch and Housego | 15210 | Quantity: 1 |
Aousto optic modulator RF driver, frequncy: 210 MHz | Gooch and Housego | MHP210-1ADS2-A1 | Quantity: 1 |
High frequncy lock-in amplifier | Stanford Research Systems | SR844 | Quantity: 1 |
Frequency counter | Phase Matrix | EIP 578B | Quantity: 1 |
Arbitrary function Generator | Tektronix | AFG2021 | Quantity: 2 |
Data acquisition (DAQ) module | National Instruments | NI USB-6212 BNC | Quantity: 1 |
Data acquisition (DAQ) software | National Instruments | LabVIEW 2014 | Quantity: 1 |
Regulated DC power supply dual 0-30V 5A | MEILI | MCH-305D-ii | Quantity: 1 |
Thermocouple | MRC | TP-01 | Quantity: 1 |
Thermometer | MRC | TM-5007 | Quantity: 1 |
Coaxial low pass filter DC-1.9 MHz | Mini Circuits | BLP-1.9+ | Quantity: 1 |
20% lipid-emulsion | Sigma-Aldrich | I141-100ml | Quantity: 1 |
24×40 mm cover glass thick:3 # | Menzel Glaser | 150285 | Quantity: 1 |
Computational software | MathWorks | MATLAB 2015a |