Summary

VacuSIP,对改进的方法INEX<em>原位</em>颗粒物与测量溶解的化合物加工后主动悬挂给料机

Published: August 03, 2016
doi:

Summary

We introduce the VacuSIP, a simple, non-intrusive, and reliable method for clean and accurate point sampling of water. The system was developed and evaluated for the simultaneous collection of the water inhaled and exhaled by benthic suspension feeders in situ, to cleanly measure removal and excretion of particulate and dissolved compounds.

Abstract

Benthic suspension feeders play essential roles in the functioning of marine ecosystems. By filtering large volumes of water, removing plankton and detritus, and excreting particulate and dissolved compounds, they serve as important agents for benthic-pelagic coupling. Accurately measuring the compounds removed and excreted by suspension feeders (such as sponges, ascidians, polychaetes, bivalves) is crucial for the study of their physiology, metabolism, and feeding ecology, and is fundamental to determine the ecological relevance of the nutrient fluxes mediated by these organisms. However, the assessment of the rate by which suspension feeders process particulate and dissolved compounds in nature is restricted by the limitations of the currently available methodologies. Our goal was to develop a simple, reliable, and non-intrusive method that would allow clean and controlled water sampling from a specific point, such as the excurrent aperture of benthic suspension feeders, in situ. Our method allows simultaneous sampling of inhaled and exhaled water of the studied organism by using minute tubes installed on a custom-built manipulator device and carefully positioned inside the exhalant orifice of the sampled organism. Piercing a septum on the collecting vessel with a syringe needle attached to the distal end of each tube allows the external pressure to slowly force the sampled water into the vessel through the sampling tube. The slow and controlled sampling rate allows integrating the inherent patchiness in the water while ensuring contamination free sampling. We provide recommendations for the most suitable filtering devices, collection vessel, and storing procedures for the analyses of different particulate and dissolved compounds. The VacuSIP system offers a reliable method for the quantification of undisturbed suspension feeder metabolism in natural conditions that is cheap and easy to learn and apply to assess the physiology and functional role of filter feeders in different ecosystems.

Introduction

底栖食悬浮在海洋生态系统1的功能发挥重要作用。通过筛选大量的水2,3,它们捞出分泌颗粒(浮游生物和碎屑)和溶解的化合物1(和参考文献),并底栖中上层耦合4,5和养分循环6,7的重要代理人。精确测量的微粒和溶解的化合物除去由底栖悬浮馈线(如海绵,海鞘,多毛,和双壳类)排泄是基本了解他们的生理,代谢和摄食生态。连同泵送率测量,这也使得能够通过这些生物体和水质以及对生态系统规模的过程及其生态影响介导的养分通量的定量。

选择测量颗粒去除和生产率和溶解融为一体适当的方法英镑由悬挂滤食性是获得关于它们的觅食活动8可靠的数据至关重要。如通过Riisgård和其他不适当方法偏压结果指出,扭曲的实验条件下,产生摄取和某些物质排泄的不正确的估计,并能导致由这些生物处理的养分通量的错误的定量。

两个最频繁使用的方​​法来测量滤食微粒和溶解养分通量涉及要么孵化(间接技术)或环境的同时收集和呼出的水(直接技术)。孵化技术基于测量的变化率中的颗粒在温育水的浓度和溶解的营养物,并估计生产或除去速率相比充分控制8。然而,在孵育室包围生物体可以改变其还精g且泵送行为由于自然流动状态的变化,是由于在氧和/或在食物浓度,或由于在孵化水中7,9-排泄化合物(和其中的参考文献)的积累减少。除了 ​​分娩和改性水供给的影响,温育技术的重大偏差,从重新过滤效果(参见例如10)的茎。虽然其中一些方法问题已经通过使用合适的体积和形状的孵化容器11的或在原位 12引入再循环钟罩系统克服,这种技术经常低估去除和生产率。量化溶解化合物如溶于有机氮(DON)和碳(DOC)或无机营养素的代谢,已被证明是特别容易引起孵化技术13偏见。

在60年代末和70年代初,亨利·Reiswig9,14,15开创了直接技术的应用巨加勒比海海绵,量化通过单独采样,原位生物体吸入呼出的水粒子去除。由于施加在较小悬浮馈线和在更具挑战性的水下条件Reiswig的技术难度,研究在本领域的大部分仅限于实验室(体外 )使用大多间接孵化技术16。 Yahel和同事改装Reiswig的直接原位技术,规模较小的条件下工作。他们的方法,被称为INEX 16,是基于原状生物吸入(In)和呼出(出)水的同时水下采样。不同浓度的一对样品(INEX)之间的物质( 例如 ,细菌)的提供由动物的该物质的保持率(或生产)的量度。该INEX技术采用开放式的管依赖于所研究的生物体的泵送活动产生被动替换环境中的水收集管中的出水管喷射。而Yahel和同事在15种以上不同的悬浮液的研究已经成功地应用这种技术进料器类群( 例如 ,17),该方法是由所需的高级别实践经验的制约,一些出水管孔的微小的尺寸,并通过海况。

为了克服这些障碍,我们开发的基础上,通过细管的水样的吸控制(外径<1.6毫米)的替代技术。我们的目标是创造一种简单,可靠,廉价的设备,允许清洁和从一个非常具体的点, 在原位水采样控制如底栖悬浮馈线的出水管孔口。是有效的,该方法具有以非侵入以免影响周围流动状态或修改将b所研究的生物ehavior。这里介绍的设备被称为VacuSIP。它是由Yahel 等人开发的SIP系统的简化。 (2007年)18在深海ROV基于点采样。该VacuSIP是比原来的SIP相当便宜,它已被改编为根据SCUBA工作。该系统是根据用于实验室环境提出并通过Wright和斯蒂芬(1978)19和Møhlenberg和Riisgård(1978)20测试原理设计。

虽然VacuSIP系统是海底悬浮馈线的代谢的原位研究设计用于,它也可用于实验室研究和任何需要控制和清洁,点源的水样。需要在延长的时间段(最小-小时) 或原位抽滤集成系统时是特别有用的。该VacuSIP已在2011年以来Yahel实验室成功地使用,并且还在最近的两个由加勒比和地中海海绵21种营养介导通量研究被使用(莫尔甘蒂等人提交)。

使用特定的采样器,该延长取样持续时间,和现场条件下,在被施加VacuSIP,而承受从标准海洋学协议一些偏差,收集,过滤,并存储样本敏感的分析物。由VacuSIP系统或水样的变形例的由收集后细菌活性的风险降低污染的风险,我们测试原位过滤和存储程序的各种。不同的过滤器,收集容器,并存储程序,以实现溶解无机(PO 4 3-,NO x ,NH + 4的SiO 4)的分析中最适合的技术进行了检查,有机(DOC +,DON)化合物,和超浮游生物(<1081 M)和颗粒有机(POC + PON)采样。为了进一步减少污染的风险,尤其是在野外条件下,处理步骤的数量减少到最低限度。其中提出的方法的可视格式被定向,以促进再现性并减少以有效地应用该技术所需的时间。

系统总览

从具有小到2毫米exhalant孔悬浮液供料器原位泵送水样,每个试样的泵送活性首先通过释放过滤荧光染色海水可视的吸入口(S)和观察从出水管孔16其流动旁(也参见图2B中18)。在研究样品(incurrent和出水管)吸入和呼出的水,然后同时通过使用一对安装在定制操纵分钟管的或在两个所述“芳的采样毫秒“倒置柔性便携式三角架的( 图1补充视频1)。在研究有机体吸入的水通过一管的近端仔细定位的内部或附近的研究生物的吸入孔收集。一个恒然后管被定位在出水管孔口内。此操作需要良好小心,以避免接触或动 ​​物的干扰, 例如 ,通过沉淀再悬浮。为了开始采样,潜水员刺穿在收集容器与连接到注射针的隔膜每个管的远端,允许外部水压力迫使采样水进入通过采样管的容器中。抽吸通过先前在小瓶中产生的真空和通过外部水和抽空样品容器之间的压力差启动。

为确保呼出的水干净收集和避免AMBI意外吸耳鼻喉科水16时,水的采样速率需要被保持在比所述出水管流速的显著降低率(<10%)。抽吸速率由管的长度和它的内直径(ID)的控制。小内径也保证了可以忽略不计的死体积(<每管200米微升)。采样过长时间的(几分钟到几小时)使得有可能感兴趣的大多数物质的固有斑块集成。以确保样品充分保留在延长的水下采样会话以及用于运输到实验室, 在原位过滤推荐用于敏感的分析物。取样容器,过滤组件和管道的选择是通过研究生物和具体的研究问题所决定的。下面描述的协议假定一个完整代谢分布是感兴趣(查看概述参见图2)。然而,协议的模块化特性允许˚F否则容易修改,以适应更简单,甚至非常不同的抽样方案。对于一个完整的代谢分布,采样协议应该包括以下步骤:(1)流量可视化; (2)取样超浮游生物馈送(浮游生物<10微米); (3)采样无机养分的吸收和排泄(使用在线过滤器); (4)采样溶解有机的吸收和排泄(使用在线过滤器); (5)颗粒喂养和排泄(使用在线过滤器); (6)重复步骤2(超浮游生物喂养的质量检查); (7)流量的可视化。

当后勤可行的,则建议的代谢分布测量用泵送速率组合( 例如,染料前端速度的方法,在16)以及与呼吸测量。这些测量是在取样会话的开始和结束时最好服用。为呼吸测量,水下光极或微电极是优选的。

Protocol

1.预备步骤和清洁程序 清洗液 穿戴护具,白大褂和手套在任何时候。开展无烟尘一个干净的空间,这些准备步骤。 使用新鲜的,高品质,双蒸水5-10%的盐酸(HCl)解决方案。 制备5%的阴离子和非离子表面活性剂溶液的高度可溶基本混合物(见材料清单)用新鲜的,高品质,双蒸水。 存放在干净的所有解决方案,酸洗容器。 <st…

Representative Results

海水收集方法优化 收集瓶和清洗程序的选择 VacuSIP兼容收集容器应具有一个隔膜,允许采样到通过用注射器针头刺入发起。他们应该承受较高压力的水下(2-3条在工作深度潜水典型),并应维持真空。许多(但不是所有品牌)的挥发性有机物的分?…

Discussion

准备步骤

收集瓶的DOM和营养分析

因为集电极船只可与溶解微成分相互作用并采样壁可以是用于生长30-34,对DOM和养分收集不同小瓶测试细菌的底物。不建议二氧化硅定量33,35硼硅酸盐,因为玻璃瓶最多可将两折增加二氧化硅的初始浓度如果样品不能迅速冻结30。我们的结果表明,使用预清洁的EPA小…

Disclosures

The authors have nothing to disclose.

Acknowledgements

我们感谢马内尔·玻利瓦尔,他在野外工作的协助。我们感谢“自然公园德尔德蒙特格里,莱巴利阿里玛代I EL的Baix泰尔”他们对我们的研究和抽样权限的支持。水下机器人是由Ayelet Dadon-Pilosof设计和Pilosof先生制造。这项工作是由西班牙政府项目CSI-珊瑚[授权号CGL2013-43106-R RC来和MR],然后由“部:EDUCACION,文化宫ÿDeporte(MECD)”,以TM一个FPU奖学金支持。这是从海洋生物地球化学贡献与全球变化研究小组由加泰罗尼亚政府[授权编号2014SGR1029]和ISF授权十三分之一千二百八十〇和BSF补助2012089到G Yahel资助。

Materials

GorillaPod, Original Joby GP000001 flexible portable tripod 
Flangeless Ferrule IDEX Health & Science  P-200X 1/16" in Blue/pk
Male Nut IDEX Health & Science  P-205X  1/16" in Green/10pk
Female to Female Luer IDEX Health & Science  P-658
Female-Male Luer IDEX Health & Science  P-655
Peek Tubing (250µm ID) IDEX Health & Science  1531 1/16" OD x 0.01in ID x 5ft lenght. Alternative ID can be used
Two component resin epoxy IVEGOR 9257 Mix well the two component resin before use
(TOC) EPA VIALS Cole -Parmer  03756-20 40 ml glass vials. Manifactured also by Thomas Scientific (ref. number 9711F09) 
HDPE VIALS Wheaton 986701 (E78620) 20 ml high-density polyethylene vials
Vacuette Z no additive Greiner bio-one 455001 pre-vacuum by the manufacturer 
Septum Sample Bottles Thomas Scientific 1755C01 250 ml glass bottles 
Septum Cap 1 Wheaton W240844SP (E7865R) 22-400 for HDPE vials 
Septum Cap 2  Wheaton W240846 (1078-5553) 24-400 for glass vials and bottles. Also manufactured by Thermo Scientific National (ref. 03-377-42)
In-line stainless steel Swinney Filter holders Pall  516-9067 13mm of diameter
PTFE Seal Washer Pall  516-8064 ring for stainless steel filter holders
TCLP Glass Filters Pall  516-9126 binder-free glass fiber filters, 13mm of diameter,  pore size 0.7µm
Polycarbonate Filter Holders  Cole -Parmer  17295 13mm of diameter
Isopore Membrane Filters Millipore GTTP01300 13mm of diameter, pore size 0.2 µm 
Contrad 2000 Solution  Decon Labs E123FH highly soluble basic mix of anionic and non-ionic surfactant solution 
Sterile Syringe Filters VWR International Eurolab S.L. 514-0061P 25mm of diameter , pore size 0.2 µm 
Fluorescein Sigma-Aldrich (old ref.28802) 46955-100G  100g 
Holdex, disposable,sterile Greiner bio-one 450263 sterile, single-use tube holder with off-center luer for Vacuette
Sterile Needles IcoGammaPlus 5160 0.7mm x 30mm
Cryovials Nalgene Nalgene V5007(Cat. No.5000-0020) 2ml 
Cryobox carton  Rubilabor M-600 145x145x55mm p/microtube 1.5 ml
Orthophosphoric Acid Sigma 79617
Paraformaldehyde Sigma P6148 500g
Glutaraldehyde Merck 8,206,031,000 25%, 1 L
Hand Vacuum Pump  Bürkle  5620-2181

References

  1. Gili, J. M., Coma, R. Benthic suspension feeders: their paramount role in littoral marine food webs. Trends. Ecol. Evol. 13 (8), 316-321 (1998).
  2. Reiswig, H. In situ pumping activities of tropical Demospongiae. Mar. Bio. 9, 38-50 (1971).
  3. McMurray, S., Pawlik, J., Finelli, C. Trait-mediated ecosystem impacts: how morphology and size affect pumping rates of the Caribbean giant barrel sponge. Aquat. Bio. 23 (1), 1-13 (2014).
  4. Pile, A. J., Young, C. M. The natural diet of a hexactinellid sponge: benthic-pelagic coupling in a deep-sea microbial food web. Deep-Sea Res. Pt. I. 53 (7), 1148-1156 (2006).
  5. Nielsen, T., Maar, M. Effects of a blue mussel Mytilus edulis bed on vertical distribution and composition of the pelagic food web. Mar. Ecol. Prog. Ser. 339, 185-198 (2007).
  6. De Goeij, J. M., et al. Surviving in a marine desert: the sponge loop retains resources within coral reefs. Science. 342, 108-110 (2013).
  7. Maldonado, M., Ribes, M., van Duyl, F. C. Nutrient Fluxes Through Sponges. Biology, Budgets, and Ecological Implications. Advances in Marine Biology. 62, (2012).
  8. Riisgård, H. U. On measurement of filtration rates in bivalves – the stony road to reliable data: review and interpretation. Mar. Ecol. Prog. Ser. 211, 275-291 (2001).
  9. Reiswig, H. M. Water transport, respiration and energetics of three tropical marine sponges. J. Exp. Mar. Biol. Ecol. 14, 231-249 (1974).
  10. Jiménez, E., Ribes, M. Sponges as a source of dissolved inorganic nitrogen: nitrification mediated by temperate sponges. Limnol. Oceanogr. 52 (3), 948-958 (2007).
  11. Diaz, M. C., Ward, B. Sponge-mediated nitrification in tropical benthic communities. Mar. Ecol. Prog. Ser. 156, 97-107 (1997).
  12. Ribes, M., Coma, R., Gili, J. Natural diet and grazing rate of the temperate sponge Dysidea avara (Demospongiae, Dendroceratida) throughout an annual cycle. Mar. Ecol. Prog. Ser. 176, 179-190 (1999).
  13. Jiménez, E. . Nutrient fluxes in marine sponges: methodology, geographical variability and the role of associated microorganisms. , (2011).
  14. Reiswig, H. M. Particle feeding in natural populations of three marine demosponges. Biol. Bull. 141 (3), 568-591 (1971).
  15. Reiswig, H. M. In situ pumping activities of tropical Demospongiae. Mar. Biol. 9 (1), 38-50 (1971).
  16. Yahel, G., Marie, D., Genin, A. InEx – a direct in situ method to measure filtration rates, nutrition, and metabolism of active suspension feeders. Limnol. Oceanogr-meth. 3, 46-58 (2005).
  17. Genin, A., Monismith, S. S. G., Reidenbach, M. A., Yahel, G., Koseff, J. R. Intense benthic grazing of phytoplankton in a coral reef. Limnol. Oceanogr. 54 (2), 938-951 (2009).
  18. Yahel, G., Whitney, F., Reiswig, H. M., Leys, S. P. In situ feeding and metabolism of glass sponges (Hexactinellida , Porifera) studied in a deep temperate fjord with a remotely operated submersible. Limnol. Oceanogr. 52 (1), 428-440 (2007).
  19. Wright, S. H., Stephens, G. C. Removal of amino acid during a single passage of water across the gill of marine mussels. J. Exp. Zool. 205, 337-352 (1978).
  20. Møhlenberg, F., Riisgård, H. U. Efficiency of particle retention in 13 species of suspension feeding bivalves. Ophelia. 17 (2), 239-246 (1978).
  21. Mueller, B., et al. Natural diet of coral-excavating sponges consists mainly of dissolved organic carbon (DOC). PLoS ONE. 9 (2), e90152 (2014).
  22. Gasol, J. M., Moran, X. A. G. Effects of filtration on bacterial activity and picoplankton community structure as assessed by flow cytometry. Aquat. Microb. Ecol. 16 (3), 251-264 (1999).
  23. Koroleff, F. Determination of reactive silicate. New Baltic Manual, Cooperative Research Report Series A. 29, 87-90 (1972).
  24. Murphy, J., Riley, J. P. A. Modified single solution method for the determination of phosphate in in natural waters. Anal. Chim. Acta. 27, 31-36 (1962).
  25. Shin, M. B. Colorimetric method for determination of nitrite. Ind.Eng.Chem. 13 (1), 33-35 (1941).
  26. Wood, E. D., Armstrong, F. A. J., Richards, F. A. Determination of nitrate in sea water by cadmium-copper reduction to nitrite. J. Mar. Biol. Assoc. U. K. 47 (1), 23-31 (1967).
  27. Sharp, J. H., et al. A preliminary methods comparison for measurement of dissolved organic nitrogen in seawater. Mar. Chem. 78 (4), 171-184 (2002).
  28. Sharp, J. H. Marine dissolved organic carbon: Are the older values correct. Mar. Chem. 56 (3-4), 265-277 (1997).
  29. Holmes, R. M., Aminot, A., Kerouel, R., Hooker, B. A., Peterson, B. J. A simple and precise method for measuring ammonium in marine and freshwater ecosystems. Can. J. Fish. Aquat. Sci. 56 (10), 1801-1808 (1999).
  30. Degobbis, D. On the storage of seawater samples for ammonia determination. Limnol. Oceanogr. 18 (1), 146-150 (1973).
  31. Tupas, L. M., Popp, B. N., Karl, D. M. Dissolved organic carbon in oligotrophic waters: experiments on sample preservation, storage and analysis. Mar. Chem. 45, 207-216 (1994).
  32. Yoro, S. C., Panagiotopoulos, C., Sempéré, R. Dissolved organic carbon contamination induced by filters and storage bottles. Water Res. 33 (8), 1956-1959 (1999).
  33. Zhang, J. Z., Fischer, C. J., Ortner, P. B. Laboratory glassware as a contaminant in silicate analysis of natural water samples. Water Res. 33 (12), 2879-2883 (1999).
  34. Yoshimura, T. Appropriate bottles for storing seawater samples for dissolved organic phosphorus (DOP) analysis: a step toward the development of DOP reference materials. Limnol. Oceanogr-meth. 11 (4), 239-246 (2013).
  35. Strickland, J. D. H., Parsons, T. R. . A practical handbook of seawater analysis. , (1968).
  36. Eaton, A. D., Grant, V. Freshwater sorption of ammonium by glass frits and filters: implications for analyses of brackish and freshwater. Limnol. Oceanogr. 24 (2), 397-399 (1979).
  37. Norrman, B. Filtration of water samples for DOC studies. Mar. Chem. 41 (1-3), 239-242 (1993).
  38. Carlson, C. A., Ducklow, H. W. Growth of bacterioplankton and consumption of dissolved organic carbon in the Sargasso Sea. Aquat. Microb. Ecol. 10 (1), 69-85 (1996).
  39. Grasshoff, K., Ehrhardt, M., Kremling, K. . Methods of Seawater Analysis. Second, Revised and Extended Edition. , (1999).
  40. Perea-Blázquez, A., Davy, S. K., Bell, J. J. Nutrient utilisation by shallow water temperate sponges in New Zealand. Hydrobiologia. 687 (1), 237-250 (2012).
  41. Perea-Blázquez, A., Davy, S. K., Bell, J. J. Estimates of particulate organic carbon flowing from the pelagic environment to the benthos through sponge assemblages. PLoS ONE. 7 (1), e29569 (2012).
  42. Pile, A. J., Patterson, M. R., Witman, J. D. In situ grazing on plankton <10 µm by the boreal sponge Mycale lingua. Mar. Ecol. Prog. Ser. 141, 95-102 (1996).

Play Video

Cite This Article
Morganti, T., Yahel, G., Ribes, M., Coma, R. VacuSIP, an Improved InEx Method for In Situ Measurement of Particulate and Dissolved Compounds Processed by Active Suspension Feeders. J. Vis. Exp. (114), e54221, doi:10.3791/54221 (2016).

View Video