Summary

散装异质结太阳能电池的印刷和制作<em>原位</em>形态特征

Published: January 29, 2017
doi:

Summary

在这里,我们提出了一个协议,以制造使用微型槽模涂布机并利用同步散射技术相关于线结构表征有机薄膜太阳能电池。

Abstract

Polymer-based materials hold promise as low-cost, flexible efficient photovoltaic devices. Most laboratory efforts to achieve high performance devices have used devices prepared by spin coating, a process that is not amenable to large-scale fabrication. This mismatch in device fabrication makes it difficult to translate quantitative results obtained in the laboratory to the commercial level, making optimization difficult. Using a mini-slot die coater, this mismatch can be resolved by translating the commercial process to the laboratory and characterizing the structure formation in the active layer of the device in real time and in situ as films are coated onto a substrate. The evolution of the morphology was characterized under different conditions, allowing us to propose a mechanism by which the structures form and grow. This mini-slot die coater offers a simple, convenient, material efficient route by which the morphology in the active layer can be optimized under industrially relevant conditions. The goal of this protocol is to show experimental details of how a solar cell device is fabricated using a mini-slot die coater and technical details of running in situ structure characterization using the mini-slot die coater.

Introduction

有机光伏(OPV)是一种很有前途的技术,以在不久的将来,具有成本效益的可再生能源。已经进行了1,2,3巨大的努力来开发光活性聚合物和制造高效率设备。迄今为止,单层OPV器件都实现了> 10%的电源转换效率(PCE)。这些效率一直在使用旋涂生成电影翻译实验室规模的设备,并取得了较大规模的增加设备已经充满了在PCE显著减少。 4,5在工业上,卷到辊基于(R2R)薄膜涂层被用来产生对导电性基板,它是从典型的实验室规模的过程完全不同,特别是在除去溶剂的速度光子活性薄膜。这是至关重要的,因为形态是きnetically困,从多个动力学过程,包括相分离,订购,定向和溶剂蒸发之间的相互作用产生的。 6,7本动力学捕获的形态,但是,在很大程度上决定了太阳能电池装置的性能。因此,在涂覆过程中理解形态的发展是非常重要,用于操纵形态,以优化性能。

形态的优化需要理解以在作为除去溶剂溶液中的空穴导电性聚合物的顺序相关联的动力学; 8,9量化与基于富勒烯电子导体聚合物的相互作用; 10,11,12理解的添加剂的作用在确定吗啉迟缓; 13,14,15和平衡溶剂(S)和添加剂的蒸发的相对速率。 16它一直定量表征形态的演变在有源层中的工业相关设置的一个挑战。卷对卷的处理已经研究了大规模OPV器件的制造。 4,17然而,这些研究在大批量的材料被用于制造设置进行,有效地限制了研究,以市售的聚合物。

在本文中,使用一个小型缝口模头涂层系统制造OPV器件的技术细节被表现出来。涂料参数如漆膜干燥动力学和薄膜厚度控制适用于规模较大的进程,使得这项研究直接相关的产业发brication。此外,材料的一个非常小的量在小槽模涂布实验使用,使得该处理适用于新的合成材料。在设计中,这种微型槽模涂布机可以安装在同步加速器终端站,从而掠入射小角度X射线散射(GISAXS)和X射线衍射(GIXD)可以被用于在演进实现实时研究形态在宽范围的长度的下一个范围的加工条件秤在膜干燥过程中的不同阶段。在这些研究中获得的信息可以被直接转移到工业制造的设置。所用材料的少量使大量光活性材料和各种加工条件下它们的混合物的快速筛选。

基于低频带共轭聚合物的半结晶二酮吡咯并吡咯和2-四噻吩(DPPBT)用作模型供体材料,和(6,6) – 苯基C71-butyriÇ酸甲酯(PC 71 BM)用作电子受体。 18, 第19它示出在以往的研究认为DPPBT:PC 71 BM共混使用氯仿作为溶剂时形成大尺寸的相分离。有氯仿:1,2-二氯苯溶剂混合物,可以减少相分离的大小,从而提高了器件的性能。在溶剂干燥过程中的形态形成在原位由掠入射X射线衍射和散射的影响。太阳能电池装置采用使用最佳溶剂混合物的条件下,20,它是类似于旋涂制造设备小型槽模涂布机显示出5.2%的平均四氯乙烯制成。微型槽模涂布机将打开一条新的路径中模仿工业过程研究实验室设置以制造太阳能电池装置,在工业上的rel填充在这些材料中的预测的生存能力的间隙埃文特设置。

Protocol

1.光子活性混合油墨制备称重10毫克DPPBT聚合物和10mg的PC 71 BM的材料( 图1中所示的化学结构)。它们混合在4ml的小瓶。 加1.5毫升氯仿和75微升1,2-二氯苯到混合物中。 把一个小搅拌棒插入小瓶中,用聚四氟乙烯(PTFE)帽关闭小瓶中,并将小瓶转移到热板上。在〜400转,而热量〜使用前50℃搅拌过夜。 2. ITO和晶片基板清洗和准备<…

Representative Results

图3所示是微型槽模涂覆系统。它由一个涂覆机一注射泵和一个中央控制盒。涂布机是必不可少的组成部分,它是由一个槽模头,一个水平平移的阶段,以及一个垂直的平移阶段。槽模头通过一个2-D倾斜操纵器安装到垂直平移电机的基础。 图10a示出了打印机主体无安装从该二维倾斜操纵器被突出显示的打印头。 图10b示出打印头到的2-D…

Discussion

这里介绍的方法侧重于开发能够在工业生产中很容易地扩展电影的制备方法。薄膜的印刷和同步加速器形态学表征是与协议中最关键的步骤。在以前的实验缩放OPV研究,旋涂法被用作主要方法来制造薄膜器件。然而,这种方法使用高离心力摊开BHJ解决方案,这是从工业基于辊到辊加工完全不同。因此,从旋转涂布研究中获得的知识和经验不能直接传递到大面积的器件的制造。在目前的研究中提出?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

This work was supported by Polymer-Based Materials for Harvesting Solar Energy (PHaSE), an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Basic Energy Sciences under award number DE-SC0001087 and the U.S. Office of Naval Research under contract N00014-15-1-2244. Portions of this research were carried out at beamline 7.3.3 and 11.0.1.2 at the Advanced Light Source, Lawrence Berkeley National Laboratory, which was supported by the DOE, Office of Science, and Office of Basic Energy Sciences.

Materials

PC71BM Nano-C Inc nano-c-PCBM-SF
DPPBT The University of Massachusetts Custom Made
PEDOT:PSS Heraeus P VP Al 4083
Mucasol Liquid Cleaner Sigma-Aldrich Z637181
Acetone Sigma-Aldrich 270725
Isopropyl Alcohol BDH BDH1133
Chloroform Sigma-Aldrich 372978 
1,2-diChlorobenzene Sigma-Aldrich 240664
Lithium fluoride Sigma-Aldrich 669431
Aluminum Kurt Lesker EVMAL50QXHD
Glass vials Fisher Scientific 03-391-7B
Ultrasonic Cleaner Cleanosonic Branson 2800
Oven WVR 414005-118
Cleaning Rack Lawrence Berkeley National Lab Custom Made
Shadow Mask Lawrence Berkeley National Lab Custom Made
UV-Ozone Cleaner UVOCS INC T16X16 OES
Glove Box MBraun Custom Made
Evaporator MBraun Custom Made
Slot Die Coater Jema Science Inc Custom Made
Solar Simulator Newport Class ABB
Spin Coater SCS Equipment SCS G3
Hot Plate Thermo Scientific SP131015Q
X-ray Measurement Lawrence Berkeley National Lab Beamline 7.3.3

References

  1. Brabec, C. J., et al. Polymer-Fullerene Bulk-Heterojunction Solar Cells. Adv. Mater. 22 (34), 3839-3856 (2010).
  2. Thompson, B. C., Fréchet, J. M. J. Polymer-Fullerene Composite Solar Cells. Angew. Chem. Int. Ed. 47 (1), 58-77 (2008).
  3. Günes, S., Neugebauer, H., Sariciftci, N. S. Conjugated Polymer-Based Organic Solar Cells. Chem. Rev. 107 (4), 1324-1338 (2007).
  4. Krebs, F. C., et al. The OE-A OPV demonstrator anno domini 2011. Energy Environ. Sci. 4 (10), 4116 (2011).
  5. Krebs, F. C., Tromholt, T., Jørgensen, M. Upscaling of polymer solar cell fabrication using full roll-to-roll processing. Nanoscale. 2 (6), 873 (2010).
  6. Liu, F., Gu, Y., Jung, J. W., Jo, W. H., Russell, T. P. On the morphology of polymer-based photovoltaics. J. Polym. Sci. Polym. Phy. 50 (15), 1018-1044 (2012).
  7. Liu, F., et al. Characterization of the morphology of solution-processed bulk heterojunction organic photovoltaics. Prog. Polym. Sci. 38 (12), 1990-2052 (2013).
  8. Schmidt-Hansberg, B., et al. In situ monitoring the drying kinetics of knife coated polymer-fullerene films for organic solar cells. J. appl. phys. 106 (12), 124501 (2009).
  9. Pearson, A. J., Wang, T., Lidzey, D. G. The role of dynamic measurements in correlating structure with optoelectronic properties in polymer fullerene bulk-heterojunction solar cells. Rep. Prog. Phys. 76 (2), 022501 (2013).
  10. Treat, N. D., et al. Interdiffusion of PCBM and P3HT Reveals Miscibility in a Photovoltaically Active Blend. Adv. Energy Mater. 1 (1), 82-89 (2010).
  11. Collins, B. A., et al. Molecular Miscibility of Polymer-Fullerene Blends. J. Phys. Chem. Lett. 1 (21), 3160-3166 (2010).
  12. Chen, D., Liu, F., Wang, C., Nakahara, A., Russell, T. P. Bulk Heterojunction Photovoltaic Active Layers via Bilayer Interdiffusion. Nano Lett. 11 (5), 2071-2078 (2011).
  13. Gu, Y., Wang, C., Russell, T. P. Multi-Length-Scale Morphologies in PCPDTBT/PCBM Bulk-Heterojunction Solar Cells. Adv. Energy Mater. 2 (6), 683-690 (2012).
  14. Perez, L. A., et al. Solvent Additive Effects on Small Molecule Crystallization in Bulk Heterojunction Solar Cells Probed During Spin Casting. Adv. Mater. 25 (44), 6380-6384 (2013).
  15. Lee, J. K., et al. Processing Additives for Improved Efficiency from Bulk Heterojunction Solar Cells. J. Am. Chem. Soc. 130 (11), 3619-3623 (2008).
  16. Shin, N., Richter, L. J., Herzing, A. A., Kline, R. J., DeLongchamp, D. M. Effect of Processing Additives on the Solidification of Blade-Coated Polymer/Fullerene Blend Films via In-Situ Structure Measurements. Adv. Energy Mater. 3 (7), 938-948 (2013).
  17. Sødergaard, R., Hösel, M., Angmo, D., Larsen-Olsen, T. T., Krebs, F. C. Roll-to-roll fabrication of polymer solar cells. Mater. Today. 15 (1-2), 36-49 (2012).
  18. Liu, F., et al. Efficient Polymer Solar Cells Based on a Low Bandgap Semi-crystalline DPP Polymer-PCBM Blends. Adv. Mater. 24 (29), 3947-3951 (2012).
  19. Liu, F., et al. Relating Chemical Structure to Device Performance via Morphology Control in Diketopyrrolopyrrole-Based Low Band Gap Polymers. J. Am. Chem. Soc. 135 (51), 19248-19259 (2013).
  20. Liu, F., et al. Fast Printing and In Situ Morphology Observation of Organic Photovoltaics Using Slot-Die Coating. Adv. Mater. 27 (5), 886-891 (2015).

Play Video

Cite This Article
Liu, F., Ferdous, S., Wan, X., Zhu, C., Schaible, E., Hexemer, A., Wang, C., Russell, T. P. Printing Fabrication of Bulk Heterojunction Solar Cells and In Situ Morphology Characterization. J. Vis. Exp. (119), e53710, doi:10.3791/53710 (2017).

View Video