We describe a method for the fabrication of large-area (up to 13 cm diameter) and ultrathin (as thin as 8 nm) polymer films. Instead of using a sacrificial interlayer to delaminate the film from its substrate, we use a self-limiting surface treatment suitable for arbitrarily large areas.
This procedure describes a method for the fabrication of large-area and ultrathin free-standing polymer films. Typically, ultrathin films are prepared using either sacrificial layers, which may damage the film or affect its mechanical properties, or they are made on freshly cleaved mica, a substrate that is difficult to scale. Further, the size of ultrathin film is typically limited to a few square millimeters. In this method, we modify a surface with a polyelectrolyte that alters the strength of adhesion between polymer and deposition substrate. The polyelectrolyte can be shown to remain on the wafer using spectroscopy, and a treated wafer can be used to produce multiple films, indicating that at best minimal amounts of the polyelectrolyte are added to the film. The process has thus far been shown to be limited in scalability only by the size of the coating equipment, and is expected to be readily scalable to industrial processes. In this study, the protocol for making the solutions, preparing the deposition surface, and producing the films is described.
Free-standing thin polymer films are used in a variety of applications including sensors, 1-3 MEMs, catalysis or filtration, 4 and tissue engineering. 5-8 They are also used for fundamental studies exploring the behavior of polymers under confinement. 9-13 A free-standing film is one that is supported on a non-continuous substrate such as an annular ring or hoop as opposed to a silicon wafer or glass slide. This work describes a simple, repeatable fabrication procedure for ultrathin free-standing polymer films that is suitable for large-area films or high-throughput production. It is compatible with a variety of different polymers, including poly(vinyl formal), polystyrene, and poly(methyl methacrylate). It can be used to fabricate free-standing films that are as large as 13-cm diameter or as thin as 10 nm.
The fabrication of free-standing polymers consists of three basic steps: 1) deposition of polymer film onto a traditional substrate such as a wafer or slide, 2) release or liftoff of the film from the substrate, and 3) capture of the resultant film onto a support. This paper details a procedure that we reported in an earlier study on various release methods. 14
Deposition can be achieved by any number of basic polymer thin film technologies such as spin-coating, vapor deposition, or dip-coating. In this work, we utilize standard spin-coating techniques.
The “lift off-float on” technique is the most common method for releasing an ultrathin film from its substrate. 15 In this technique, the film and substrate are immersed in a suitable solvent bath. The solvent swells the film and induces spontaneous delamination, releasing the film and allowing it to float to the top of the bath. The minimum film thickness that can be released using lift off-float on is determined by balancing the interfacial peeling energy with the swelling-induced strain energy: 16
(1)
Where L is the film thickness, νf is the Poisson’s ratio of the film, E is the Young’s modulus of the film, ξ is the swelling ratio of the film, and γ is the interfacial energy of peeling. The typical way to bypass the limitation imposed by Equation (1) is to deposit a sacrificial interlayer between the film and the deposition substrate. 17-20 When this interlayer dissolves in a solvent bath, the film is released and can be captured on a support. A related method is the sacrificial overlayer method, which utilizes mechanical peeling of the film onto a sacrificial layer prior to dissolution. 21
The use of sacrificial materials has several chief drawbacks. First, the addition of an extra process material and step may require a compromise between optimal film fabrication conditions and sacrificial material processing conditions. Second, sacrificial materials may be difficult to deposit without affecting the mechanical properties or purity of the final free-standing film. Third, the process for depositing the sacrificial material must be optimized and monitored for quality as an operation in the overall free-standing film fabrication. 14
In this work, we describe a surface modification technique that decreases the interfacial peeling energy, enabling the lift off-float on technique to be used for ultrathin films. The deposition substrate is modified by assembling a self-limited, self-optimizing near-monolayer of the polycation polydiallyldiammonium chloride (PDAC). Because of the strength of the binding between the polycation and the substrate, this surface modification is robust to subsequent process steps. The self-limiting and self-optimizing nature of the near-monolayer formation requires practically zero optimization and is easily scalable to large areas.
Following removal, the film floats to the top of the solvent bath where it is captured on a hoop-like support. While not given much attention in the extant literature, in this work we will describe techniques for capturing large-area films on supports that reduce the probability of tearing or otherwise damaging the film.
1. Solution Preparation
2. Substrate Preparation
3. Film Fabrication
Figure 1 shows an example of a free-standing thin polymer film over a large area. This 55 nm thick polyvinyl formal film was fabricated using the procedure described here and is mounted on a 13-cm diameter steel hoop. The delamination occurs over large areas without introducing defects that lead to tearing of the film. Thus, the intrinsic strength of polyvinylformal can be exploited even for very thin films. Figure 2 shows a 22 nm thick free-standing film that is strong enough to be loaded with a watch glass and copper beads that weigh >3×105 times the mass of the film itself. Spectroscopic ellipsometry can be used to confirm the thickness of the freestanding film. Figure 3 shows ellipsometric data for an 8.0 nm film. Silicon surfaces treated with PDAC can be used multiple times for film delamination; X-ray photoelectron spectroscopy (XPS) spectra in Figure 4 show that once deposited, the PDAC is robustly attached to the surface and is not removed during the lift-off procedure.
Figure 1. A 55 nm thick polyvinyl formal film mounted on a 13 cm diameter steel hoop. Reprinted with permission from [14]. Copyright 2014 American Chemical Society. Please click here to view a larger version of this figure.
Figure 2. A 22 nm thick, 13 cm diameter polyvinyl formal film loaded with a watch glass and copper beads. The total mass supported by the film is 10.5 g, while the mass of the film is estimated to be 0.336 mg. Please click here to view a larger version of this figure.
The PDAC substrate treatment is based on self-limiting electrostatic interactions, meaning substrates of any size can be easily treated provided that they are negatively charged (e.g., silicon or glass). Figures 1-2 shows very large thin films (up to 13 cm in diameter) fabricated using this protocol, with the only change being the volume of reagents used. The ultimate achievable size appears to be limited only by the deposition and delamination equipment or the ultimate strength of the polymer used to fabricate the free-standing structure. While the former is clearly a practical issue, the latter is not a simple reflection of the intrinsic strength of the polymer. We have found that evaporation rate during spin coating and solvent selection — among other factors — can determine the film strength (data not shown). The critical step in producing defect-free films over large areas is the liftoff procedure described in 3.5-3.6 in the procedure and shown in the video. Careful delamination of the thin polymer film ensures that tears or holes do not form in the final free-standing assembly.
The swelling-induced delamination of thin polymer films from their deposition substrate is limited by the strain energy in the swollen film. This limitation results in a minimum thickness that can be delaminated as shown by Equation (1), a limitation which is usually circumvented by the use of sacrificial materials. In the protocol described here, no sacrificial materials are necessary because the interfacial peeling energy has been lowered by the PDAC-modification of the deposition substrate. Using this technique, we have delaminated polyvinyl formal films as thin as 8 nm, which is a factor of ten thinner than what is possible without the PDAC treatment. An ellipsometric measurement of a free-standing 8 nm film is shown in Figure 3.
Figure 3. Spectroscopic ellipsometric data on a free-standing film collected at 65°, 70°, and 75° angles of incidence. For both ψ and δ, the curves for 65°, 70°, and 75° are arranged bottom to top. The model fits are generated using standard ellipsometric software using a Cauchy-void stack. The best-fit thickness for this film is 8.0 nm. Please click here to view a larger version of this figure.
The PDAC is effective because it decreases the interfacial peeling energy between the deposition substrate and the polymer. It is not a sacrificial layer, as evidenced by XPS spectra in Figure 4 showing its presence on the deposition substrate both before and after delamination. In fact, once treated with PDAC, a substrate can be utilized to deposit and delaminate films multiple times (at least up to ten) without any noticeable change in performance. The strong binding of the PDAC to the substrate is due to the strong electrostatic interaction between the positively charged polyelectrolyte and the negatively charged silicon substrate. 22,23
Figure 4. X-ray photoelectron spectroscopy (XPS) data of wafers coated with PDAC before and after liftoff. The spectrum is largely unchanged, indicating that little if any PDAC is removed during the process. Open circles are data and the dashed lines are constituent peaks of C-N and C-C bonds. The solid black line is the enveloping curve. The reference curve is a thick (~20 nm) film of PDAC. Reprinted with permission from [14]. Copyright 2014 American Chemical Society. Please click here to view a larger version of this figure.
Despite its strong binding to the substrate, the PDAC binds only weakly to the overlying polymer thin film. The quaternary amine side chains of PDAC likely limit the interaction between the treated substrate and the polymer film to weak van der Waal’s forces, a mechanism which is applicable to a number of different polymer thin films. We have used the protocol described here to delaminate and fabricate free-standing thin films of polystsyrene (PS), polymethyl methacrylate (PMMA), and polyvinyl butyral. Recipes for preparing solutions and spin-coating parameters can be found for PS and PMMA. 24 We expect that this procedure can be generalized to other polymer systems as well, although it likely will not work for polyelectrolyte multilayers or partially acidic copolymers due to the potential for strong binding to the PDAC-treated substrate. The liftoff procedure must also be performed under pH and ionic conditions that will neither remove the PDAC from the substrate nor damage the polymer film to be delaminated.
This protocol represents a significant alternative to the use of sacrificial materials, which is the current state of the art for releasing ultrathin polymer films from their substrates. A separate optimization of the sacrificial material deposition is no longer required, and the self-limiting PDAC treatment is easily scalable to large areas as demonstrated here. We have found that films released using sacrificial underlayers display degraded strength characteristics. 14 This protocol will enable researchers to move one step closer to probing truly intrinsic mechanical properties of the free-standing polymers as well as applications in biomaterials or filtration requiring large-area thin films.
The authors have nothing to disclose.
This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344.
Vinylec E | SPI | ||
ethyl lactate, >98%, FCC, FG, | Sigma-Aldrich | W244007-1KG-K | |
4" silicon wafers <100>, Single side polished | International Wafer Service | ||
sulfuric acid, 98%, ACS reagent grade | Sigma-Aldrich | 320501-6X500ML | |
hydrogen peroxide, 30%, semiconductor grade | Sigma-Aldrich | 316989-3.7L | |
isopropanol, ACS grade, 4 L | Fisher Scientific | A464-4 | |
dichloromethane, ACS grade | Alfa-Aesar | 22917 | |
deionized water , distilled | |||
PDAC reagent (Sigma-Aldrich 409014) | Sigma-Aldrich | 409014 | |
Spin Coater | Laurell Technologies | WS-650-23 | |
Barnstead/Thermolyne Super Nuova explosion-proof hot plate | |||
explosion-proof forced air oven | VWR | 1330 FMS | |
balance with a range of 1 mg to 1020 g | Mettler Toledo | MS1003S | |
reflectance spectrometer | Filmetrics | F20-UV | |
manipulator consisting of a Klinger tilt stage, a Brinkman rack-and-pinion and a lab jack | |||
Cutting tool/template, LLNL-built, no drawings | |||
straight edge, LLNL, no drawings | |||
Tent hoop, LLNL | |||
culture dish 190 mm x 100 mm, Pyrex | VWR | ||
20 ml beaker, Pyrex | VWR | ||
250 ml beaker, Pyrex | VWR | ||
1000 ml beaker, Pyrex | VWR | ||
60 ml glass vial with plastic stopper | VWR | ||
petri dish, 150 mm diameter x2, Pyrex | VWR | ||
600 ml beaker x2, Pyrex | VWR | ||
tweezers, stainless steel | |||
cutting blade | Exacto | ||
clean room wipes | Contec | PNHS-99 | |
polyester knit 9/91 IPA/DI water wipes | Contec | Prosat | |
Fluoroware wafer trays | Ted Pella | 1395-40 | |
Nylon Micro fiber (camel hair) | |||
Disposable BD 3-mL plastic syringe | VWR | ||
0.2 um Luer-lock PTFE filters | Acrodisc | ||
0.45 um Luer-lock PTFE filters | Acrodisc |