Stereotactic Electroencephalography (SEEG) is an operative technique used in epilepsy surgery to help localize seizure foci. It also affords a unique opportunity to investigate brain function. Here we describe how SEEG can be used to investigate cognitive processes in human subjects.
Stereotactic Electroencephalography (SEEG) is a technique used to localize seizure foci in patients with medically intractable epilepsy. This procedure involves the chronic placement of multiple depth electrodes into regions of the brain typically inaccessible via subdural grid electrode placement. SEEG thus provides a unique opportunity to investigate brain function. In this paper we demonstrate how SEEG can be used to investigate the role of the dorsal anterior cingulate cortex (dACC) in cognitive control. We include a description of the SEEG procedure, demonstrating the surgical placement of the electrodes. We describe the components and process required to record local field potential (LFP) data from consenting subjects while they are engaged in a behavioral task. In the example provided, subjects play a cognitive interference task, and we demonstrate how signals are recorded and analyzed from electrodes in the dorsal anterior cingulate cortex, an area intimately involved in decision-making. We conclude with further suggestions of ways in which this method can be used for investigating human cognitive processes.
Epilepsy, a common neurological disorder characterized by multiple recurrent seizures over time, accounts for 1% of the worldwide burden of diseases 1. Anti-epileptic medications fail to control seizures in 20 – 30% of patients 2,3. In these medically intractable patients, epilepsy surgery is often indicated 4,5. The decision to proceed with surgery requires locating the seizure focus, a prerequisite to formulating a surgical plan. Initially, non-invasive techniques are used to lateralize and localize the seizure focus. Electroencephalography (EEG), for example, measures cortical electrical activity recorded from electrodes placed on the scalp and can often provide sufficient information about the location of the seizure focus. In addition, magnetic resonance imaging (MRI) can demonstrate discrete lesions, such as hippocampal sclerosis, the classic pathology seen in the most common form of medically intractable epilepsy, mesial temporal lobe epilepsy (MTLE).
Frequently, however, the noninvasive workup is unable to identify a seizure focus. In these cases, invasive electrocorticography (ECoG) with intracerebral electrodes is required to localize the focus and guide further surgical treatment 6. ECoG is a neurophysiological technique used to measure electrical activity using electrodes placed in direct contact with the brain. Grids or strips of surface (subdural) electrodes are placed over the surface of the brain, a process that requires a craniotomy (removal of a bone flap) and large opening of the dura. These surface electrodes can be placed over the putative area(s) of seizure onset. The distal ends of the electrodes are tunneled through small openings in the skin and connected to the recording equipment in the epilepsy monitoring unit (EMU). In the EMU, the patient is monitored for clinical seizure activity through continuous video and ECoG recordings. This technique is useful for collecting long-term (days to weeks) recordings of ictal and interictal electrical discharges over relatively large areas of the cortical surface. While these intracranial recordings are invaluable clinically for investigating seizure foci and propagation, they also provide us with the opportunity to investigate cognitive function and neurophysiology in humans undergoing specifically designed behavioral tasks.
ECoG using subdural grid electrodes has been used to investigate various aspects of cortical function, including sensory and language processing. As one of many examples, Bouchard et al demonstrated the temporal coordination of the oral musculature in the formation of syllables for spoken language in the ventral sensorimotor cortex, a region identified as the human speech sensorimotor cortex 7. Furthermore, ECoG with subdural grid placement has also been utilized to study the mechanisms by which humans are able to attend to a particular voice within a crowd: the so-called ‘cocktail party effect’ 8,9. ECoG recordings demonstrated that there are two distinct neuronal bands that dynamically track speech streams, both low frequency phase and high-gamma amplitude fluctuations, and that there are distinct processing sites – one ‘modulation’ site that tracks both speakers, and one ‘selection’ site that tracks the attended talker 5.
Another emerging application of ECoG with subdural electrode placement is the potential for use with Brain Computer Interfaces (BCIs), which “decode” neuronal activity in order to drive an external output. This technology has the potential of allowing patients with severe brain or spinal cord injuries to communicate with the world and manipulate prostheses 10,11.
While subdural grid placement has contributed greatly to our understanding of superficial cortical areas and is useful in identifying cortical epileptogenic foci, this technique does require a craniotomy and its attendant risks, and is generally limited to studying the outer surface of the brain. Stereotactic electroencephalography (SEEG) is a technique that enables the assessment of deep epileptogenic foci12. With a long history of use in France and Italy, it is also increasingly being used in the US 13. SEEG involves the placement of multiple electrodes (typically 10 – 16) deep within the substance of the brain through small (few mm) twist drill burr holes. Advantages of SEEG over subdural grid placement include its less invasive nature, the ease of examining bilateral hemispheres when required, and the ability to generate three-dimensional maps of seizure propagation. Furthermore, these electrodes enable the identification of deep epileptogenic foci that were previously difficult to identify with surface electrodes. This procedure also provides the opportunity to investigate the neurophysiology and function of deep cortical structures, such as the limbic system, the mesoparietal cortex, the mesotemporal cortex, and the orbitofrontal cortex, all of which were previously difficult to directly investigate in humans.
This paper demonstrates how SEEG can be utilized to investigate cognitive function in the dorsal anterior cingulate cortex (dACC). The dACC is a widely investigated brain region, but it is also one of the most poorly understood. Considered a significant region for human cognition, it is likely that the dACC is central to the dynamic neural processing of decisions in the context of continuously changing demands imposed by the environment 14. Studies in both primates 15,16 and humans 17 suggest that the dACC integrates potential risks and rewards of a given action, especially in situations of multiple simultaneous conflicting demands18-21, and modulates these decisions in the context of previous actions and their outcomes 14,22,23.
The Multi-Source Interference Task (MSIT), a Stroop-like behavioral task, is frequently used to investigate conflict processing in the dACC. The MSIT task activates the dACC by recruiting neurons involved in multiple domains of processing regulated by the dACC 24,25. This task specifically activates the dACC by testing features of decision-making, target detection, novelty detection, error detection, response selection, and stimulus/response competition. In addition, the MSIT task introduces multiple dimensions of cognitive interference, which are utilized in this study to investigate dACC neural responses to simultaneous conflicting stimuli using SEEG.
Ensure that each patient is reviewed for suitability for the research study, and appropriate patients must be consented for participation in the study according to local IRB procedures.
1. Patient Selection for SEEG and Research
2. Preparation and Implantation Technique
3. Behavioral Task and Data Acquisition
4. Data Analysis
Once a patient is selected for SEEG electrode placement, he/she undergoes a volumetric T2 and T1 contrast enhanced MRI. SEEG electrode trajectories are then planned using stereotactic navigation of the volumetric MRI sequences (Figure 1). This technique allows for the collection of local field potentials from structures deep within the cortex such as dorsal anterior cingulate cortex (light orange trajectory, Figure 1) that would not be possible with typical surface electrode placement. Post-operatively in the EMU, the patient performs the Multi-Source Interference Task (Figure 2), designed to activate dACC neurons. After an adequate number of trials, the local field potential data from the SEEG electrodes in dACC are preprocessed in order to align the LFP data to cue presentation for subsequent meaningful analysis (Figure 3). In addition, once aligned, the LFP data can be averaged to examine changes in the averaged electrophysiological response between trial types (Figure 3F). Subsequently, multi-taper spectrograms are made to investigate changes in frequency bands over time (Figure 4). As scalp EEG studies have implicated different frequency bands in the activity seen in dACC, time-frequency analysis is an important method to link the electrophysiological changes in dACC with behavior.
Figure 1. Planned SEEG Electrode Trajectories Using Stereotactic Navigation of Volumetric T1 Contrast Enhanced MRI. Top left panel. Top down view of three-dimensionally reconstructed face with superimposed planned SEEG electrode trajectories. Top right, bottom left, and bottom right panels. Axial, sagittal and coronal views of planned SEEG electrode trajectories superimposed onto patient’s MRI. Orange electrode trajectories represent implantation into the anterior cingulate cortex bilaterally. Please click here to view a larger version of this figure.
Figure 2. The Multi-Source Interference Task. Initially, the subject fixates on a cross in the middle of the screen prior to the cue being shown. The cue is then presented and the subject must identify the “target” number, which is the one number different from the other two numbers presented. The subject indicates the choice with a button push: left button if the target is “1”, middle if “2” and right if “3.” In this example, if the subject presses the middle button, he/she is shown the number “2” in green, indicating he/she made the correct choice. If he/she chooses either of the other buttons, “2” is shown in red, indicating an incorrect choice. Subjects also undergo trials in which they do not receive valenced feedback about their choice, in which case the “2” is shown in blue regardless of whether the choice is correct or not. Please click here to view a larger version of this figure.
Figure 3. Preprocessing SEEG Data. (A) All data recorded from a single channel in the dACC. (B) A minute-long recording from anterior cingulate cortex with overlaid timing pulses for the behavioral task. (C) Data for each trial aligned on the cue presentation. (D) Data for each trial aligned on the cue presentation with outliers and artifact traces removed. (E) LFP from 20 trials aligned on cue presentation and stacked. F. Averaged LFP aligned on cue presentation from a medial prefrontal electrode. Dotted lines represent the onset of the fixation point. Dashed lines represent the cue onset. Dash-dotted lines represent the average response time. Please click here to view a larger version of this figure.
Figure 4. Spectral Analysis. (A) Raw trial-averaged multi-taper spectrogram aligned on cue. (B) The same spectrogram in A normalized by 1/f2. (C) The same spectrogram in A normalized by the mean spectrum from 500 milliseconds before the cue. (D) The same spectrogram in (A) normalized by frequency band. (E) Mean high gammaband power for normalized and unnormalized spectra. In all plots, dotted lines represent the onset of the fixation point, dashed lines represent the cue onset, and dash-dotted lines represent the average response time. Colored bars indicate the high gamma bands used in (E). Please click here to view a larger version of this figure.
In this paper SEEG was used to investigate the activity of local neuronal populations within the dACC during a decision-making task in humans. Previous work has investigated the activity of individual neurons in the dACC using intraoperative microelectode recordings 14 and demonstrated that dACC activity is modulated by previous activity. Microelectrode studies enable the investigation of the spiking activity of individual neurons. SEEG measures LFPs, which are related to the summated synaptic potentials across a large population of neurons. SEEG therefore allows the opportunity to simultaneously investigate population neuronal activity from several brain regions.
When using a clinical technique such as SEEG to investigate scientific questions, it is critical to first ensure that the operative and research plans are aligned. The clinical problem to be solved involves determining the patient’s seizure onset zone and will always take precedence. Because the operative plan is dictated by clinical need, it will not always be possible to investigate the same research problem with every case. Thus, we have developed a series of tasks designed to answer separate scientific questions that can be adapted to the patient’s operative plan depending on the regions being interrogated with electrodes.
In this study, SEEG LFP data was utilized to investigate cognitive control over goal directed behavior in the dorsal anterior cingulate cortex, a deep cortical structure in the medial prefrontal region that is difficult to investigate in humans. LFP data acquisition can be carried out with many different systems. A crucial aspect to consider is the sampling rate as this must be high enough to acquire the signals in which the researcher is interested. In general, the sampling rate should be four times higher than the highest frequency band being examined. For example, if the researcher is interested in looking at evoked potentials (<50 Hz), the sampling rate need only be around 200 samples/s. However, if the scientific question involves examining high gamma activity (60 – 200 Hz), the sampling rate should be at least 500 samples/s. Additionally, the system should be able to record enough electrodes as are implanted, and hardware filters on the data acquisition system should not exclude frequency bands of interest. For example, many systems do not record direct current signals. If the researcher is interested in studying very slow signals, he/she should use a recording system with an appropriately low high-pass hardware filter. During the data analysis stage, it is important to remove trials with very large or fast transients and remove channels or trials that exhibit epileptiform activity as normal physiology is very difficult to study in the presence of epileptiform activity.
The role of the dACC in error prediction 23,41, processing reward motivated action 15 and in behavioral adaptation in the context of competing demands 18-21, conflicting responses 42 and previous activity 14,22,23, is well established. However, a unified and integrative theory for the specific neural mechanisms by which the dACC modulates cognitive control is still subject to conjecture due to a lack of empirical evidence from human studies investigating these domains simultaneously 43,44. SEEG provides the opportunity to investigate neural activity in the human dACC and therefore contribute to an integrated understanding of dACC function.
SEEG affords the opportunity to investigate other cortical areas which may be difficult to access with surface electrodes, such as the orbitofrontal cortex (OFC), whose involvement in the emotional and reward-based aspects of decision-making has been explored in studies using single unit recordings in macaque monkeys 45 and connectivity studies in humans using diffusion-weighted imaging tractography 46. While these studies have contributed to the theory of OFC function in human decision-making 47, there is a scarcity of literature in humans studying OFC function specifically 48. SEEG provides the opportunity to address this knowledge gap. Furthermore, SEEG can be used to demonstrate the function of different regions of the limbic system, a collection of deep cortical and subcortical structures involved in processing emotion, pain, fear and negative affect. One such SEEG study investigating the response of the limbic system to expressive faces has demonstrated that the hippocampus and amygdala contain specific neuronal populations that distinguish happy from fearful faces, while amygdala neuronal populations appear to track the subjective judgment of these emotional faces 49. Dysfunction in these regions is believed to be implicated in anxiety disorders 50 including obsessive-compulsive disorder 51, and SEEG studies provide the opportunity to understand the affected neural pathways and pathophysiology of these disorders in more detail.
Furthermore, SEEG can be utilized to investigate the precuneus, a site that is often targeted during SEEG epilepsy investigations, but rarely covered with subdural grid implants. The function of this region of the postero-medial parietal lobe is poorly understood, primarily because of its anatomical location deep within the interhemispheric fissure. Functional imaging studies have shown that the precuneus is active in the ‘default mode’ or conscious resting state 52, in self processing 53-55, and in episodic memory processing, including for autobiographical memories 56,57. However, since these findings are based on limited studies in non-human primates and humans, our understanding of the neurocognitive importance of this region is still in its infancy 58. With SEEG, we now have the potential to investigate neuronal activity within the precuneus in awake humans, which may provide novel insight into the function of this brain region.
As with any technique, SEEG has limitations in both its acquisition and use. As a clinical technique, it is necessarily limited by both patient selection and the clinical nature of the patient’s epilepsy. While researchers can design a number of tasks to work around this limitation, the anatomical regions studied will always be limited by the operative plan. In addition, as previously mentioned, SEEG record local field potentials, which represent the summed synaptic potentials of many neurons. Thus, this technique does not have the spatial resolution of single neuron recording techniques and cannot provide data on spiking activity or action potential waveforms. As such, when designing tasks to investigate scientific questions, it is important to ensure that LFP data can answer the question of interest.
In this paper, SEEG was utilized to investigate deep cortical and subcortical structures that were previously difficult to study in awake human subjects. These studies have the potential to enhance our understanding of human cognitive processes. As SEEG is increasingly incorporated as a tool within the armamentarium of epilepsy programs, the opportunity of neuroscientists to harness its potential to study the human brain will grow significantly.
The authors have nothing to disclose.
The authors have no acknowledgements or financial disclosures.
Trigger I/O cable | Natus Medical Inc. | 5029 | PS2 to BNC cable |
BNC cables for analog pulses | Can be ordered from most electronics stores. | ||
Power strip with surge protection and battery backup | Tripp Lite | SMART500RT1U UPC | Power source and backup |
National instruments multifunctional daq data acquisition box NI PCIe-6382 DAQ cards | National Instruments | PCIe-6382 w/ BNC 2090A | PCI cards for behavioral control interface |
Custom made button box – human interface device | Any human interface device with three buttons may be used. Alternatively, 3 keyboard buttons may be used. | ||
Xltek 128 channel clinical intracranial EEG monitoring system EMU128FS | Natus Medical Inc. | 002047c | Clinical recording system |
Subject monitor and associated cables for visual stimulus presentation | Dell | U2212HMc | Most Monitors are adequate here. |
Personal comptuer running behavioral software with DAQ cards installed | Superlogics | SL-2U-PD-Q87SLQ-BA | Computer for recording neural data |
Mains cable for monitor | Usually comes with the monitor, can be purchased at any electronics store. | ||
Monkey Logic software which runs on Matlab 2010A | Free from MonkeyLogic website | ||
MATLAB 2010a software with data acquisition toolbox | Mathworks | Matlab software | |
sEEG electrodes AD TECH or PMT | AD TECH | 2102-##-101 | Platinum tip, diameter (0.89 mm, 1 mm, 1.1 mm), uninsulated length 2.3 mm; The ## in the catalog number indicates the number of contacts on the electrode (08, 10, 12, or 16) |
Cabrio connectors | PMT | 2125-##-01 | The ## in the catalog number indicates the number of contacts on the electrode (08, 10, 12, or 16) |
Tucker Davis Technologies Amplifier | Tucker Davs Technologies | PZ5 | preamplifier for neural data |
Tucker Davis Technologies processor | Tucker Davs Technologies | RZ2 | Neural signal processor for neural data |
TuckerDavis Technologies data streamer | Tucker Davs Technologies | RS4 | Data streamer and storage |
Fiber optics cables to connect TDT systems | Tucker Davs Technologies | F05 | Fiber optic cables for connecting Tucker Davis Technologies' prodcuts. |
ribbon cable and snap serial connector for digital markers | Can be ordered from ost electronics stores. | ||
personal computer fro running TDT RPvdsEx and OpenEx software | Superlogics | SL-2U-PD-Q87SLQ-BA | computer for behavioral control |
middle atlantics server cabinet with casters | Middle Atlantic Products | PTRK-21 | Server case to house all of the research items |
Tucker Davis Technologies splitter box to split clinical and research recrodings | Tucker Davs Technologies | This splitter box is a semi-custom device. Researchers should consult the attending neurologists about splitting the research and clinical recordings in a way that doesn't interfere with clinical care. | |
Researcher monitor with requisite cables | Dell | U2212HMc | Most Monitors are adequate here. |
button box power source – 5 volts, 2 amperes | Can be purchased at any electronics store. | ||
TDT optical interface PCI card | Tucker Davs Technologies | P05 |