Wir beschreiben eine Methode zur Erzeugung von in vitro abgeleiteten Mastzellen, deren Engraftierung in Mastzell-Mäuse und die Analyse des Phänotyps, der Anzahl und der Verteilung von transplantierten Mastzellen an verschiedenen anatomischen Standorten. Dieses Protokoll kann verwendet werden, um die Funktionen von Mastzellen in vivozu bewerten.
Mastzellen (MCs) sind hämatopoetische Zellen, die in verschiedenen Geweben leben und besonders häufig an Stellen vorhanden sind, die der äußeren Umgebung ausgesetzt sind, wie Haut, Atemwege und Magen-Darm-Trakt. Am besten bekannt für ihre nachteilige Rolle bei IgE-abhängigen allergischen Reaktionen, MCs haben sich auch als wichtige Akteure in der Wirtsabwehr gegen Gift und eindringende Bakterien und Parasiten. MC-Phänotyp und -funktion können durch Mikroumweltfaktoren beeinflusst werden, die je nach anatomischer Position und/oder je nach Art oder Entwicklungsstadium der Immunantworten abweichen können. Aus diesem Grund haben wir und andere In-vivo-Ansätze gegenüber In-vitro-Methoden bevorzugt, um Einblicke in MC-Funktionen zu gewinnen. Hier beschreiben wir Methoden zur Erzeugung von mausknochenknochenförmigen kultivierten MCs (BMCMCs), deren Adoptivübertragung in genetisch MC-defizitierte Mäuse und die Analyse der Anzahl und Verteilung von adoptiert übertragenen MCs an verschiedenen anatomischen Standorten. Diese Methode, die als“Mastzellen-Knock-in”-Ansatz bezeichnet wird, wurde in den letzten 30 Jahren ausgiebig eingesetzt, um die Funktionen von MCs und MC-abgeleiteten Produkten in vivozu bewerten. Wir diskutieren die Vorteile und Grenzen dieser Methode im Lichte alternativer Ansätze, die in den letzten Jahren entwickelt wurden.
Mastzellen (MCs) sind hämatopoetische Zellen, die aus pluripotenten Knochenmarkvorläufern1-3entstehen. Nach der Knochenmarkegression wandern MCs-Vorläufer in verschiedene Gewebe, wo sie sich unter dem Einfluss lokaler Wachstumsfaktoren1-3zu reifen MCs entwickeln. Geweberesidente MCs befinden sich strategisch an Host-Umgebungsschnittstellen, wie der Haut, den Atemwegen und dem Magen-Darm-Trakt, wo sie sich als erste Verteidigungslinie gegen äußere Beleidigungen3-6verhalten. MCs werden häufig auf der Grundlage ihrer “basiskandigen” phänotypischen Eigenschaften und ihrer anatomischen Positionen unterklassifiziert. Bei Mäusen wurden zwei Arten von MCs beschrieben: “Connective Tissue Type” MCs (CTMCs) und Mucosal MCs (MMCs)1-3,7,8. CTMCs befinden sich oft um Venules und in der Nähe von Nervenfasern und befinden sich in serosalen Hohlräumen, während MMCs intraepitheliale Stellen im Darm und der Atemschleimhaut1-3einnehmen.
Zahlreiche Methoden wurden angewandt, um biologische Funktionen von MCs9-13zu untersuchen. Viele Gruppen haben sich auf In-vitro-Ansätze konzentriert, die entweder Zelllinien (wie die menschlichen MC-Linien HMC114 oder LAD215,16), in vitro abgeleitete MCs (wie humane periphere, blutabgeleitete MCs17oder Mausknochenmark-abgeleitete Kultur) verwenden. d MCs [BMCMCs]18, fetale hautabgeleitete kultivierte MCs [FSCMCs]19 und peritoneale zellabgeleitete MCs [PCMCs]20) oder ex vivo isolierte MCs von verschiedenen anatomischen Standorten. Alle diese Modelle sind weit verbreitet, um molekulare Details der MC-Biologie zu studieren, wie Signalwege, die an der MC-Aktivierung beteiligt sind. Ein wichtiger Aspekt der MCs-Biologie ist jedoch, dass ihre phänotischen und funktionellen Eigenschaften(z. B.zytoplasmatische Granulatproteasegehalt oder Reaktion auf verschiedene Reize) durch anatomische Lage und Mikroumgebung moduliert werden können2,7. Da die genaue Mischung solcher Faktoren, die in vivo auftreten, schwierig sein kann, sich in vitrozu reproduzieren, bevorzugen wir die Verwendung von In-vivo-Ansätzen, um Einblicke in mCs-Funktionen zu gewinnen9.
Es gibt mehrere Mausstämme mit genetischem MC-Mangel, wie die weit verbreiteten WBB6F1–Kit W/W-v oder C57BL/6-Kit W-sh/W-sh Mäuse. Diesen Mäusen fehlt es an Expression und/oder Aktivität von KIT (CD117), dem Rezeptor für den wichtigsten MC-Wachstumsfaktor-Stammzellfaktor (SCF)21,22. Infolgedessen haben diese Mäuse einen tiefen MC-Mangel, haben aber auch zusätzliche phänotypische Anomalien im Zusammenhang mit ihrenc-Kit-Mutationen (in den WBB6F1– Kit W/W-v-Mäusen) oder den Auswirkungen der großen chromosomalen Inversion, die zu einer reduzierten c-Kit-Expression führt (im C57BL/6- Kit W-sh/W-sh-Mäuse) 9,10,12,23 . In jüngerer Zeit wurden mehrere Stämme von Mäusen mit c-Kit-unabhängigem konstitutivem MC-Mangel24-26berichtet. Alle diese Mäuse und einige weitere neue Arten von induzierbaren MC-Mangel Mäuse wurden vor kurzem im Detail überprüft9,10,13.
Hier beschreiben wir Methoden zur Erzeugung von mausknochenknochenförmigen kultivierten MCs (BMCMCs), deren Adoptivübertragung in MC-mangelhafte Mäuse und die Analyse der Anzahl und Verteilung von adoptiert übertragenen MCs an verschiedenen anatomischen Standorten. Diese sogenannte Mastzell-Knock-in-Methode kann verwendet werden, um die Funktionen von MCs und MC-abgeleiteten Produkten in vivozu bewerten. Wir diskutieren die Vorteile und Grenzen dieser Methode im Lichte alternativer Ansätze, die in den letzten Jahren entwickelt wurden.
Fast 30 Jahre nach seiner ursprünglichen Beschreibung38, liefert der Ansatz “Mastzellen-Knock-in” weiterhin wertvolle Informationen darüber, was MCs in vivotun können oder nicht tun können. Die Funktionen von MCs galten lange Zeit als auf ihre Rolle bei Allergien beschränkt. Daten, die mit dem “Mastzell-Knock-in“-Ansatz generiert wurden, haben diese Ansicht geändert, indem sie Beweise dafür liefern, dass MCs unter anderem eine entscheidende Rolle bei der Wirtsabwehr gegen best…
The authors have nothing to disclose.
N.G. ist Stipendiat der französischen “Fondation pour la Recherche Médicale FRM” und der Philipp-Stiftung; R.S. wird von der Lucile Packard Foundation for Children es Health und der Stanford NIH/NCRR CTSA Award Nummer UL1 RR025744 unterstützt; P.S. wird unterstützt durch ein Max Kade Fellowship der Max Kade Stiftung und der Österreichischen Akademie der Wissenschaften sowie ein Schroedinger Stipendium des Wissenschaftsfonds (FWF): J3399-B21; S.J.G. unterstützt die Stipendien der National Institutes of Health U19 AI104209, NS 080062 und des Tobacco-Related Disease Research Program an der University of California; L.L.R. unterstützt die Arthritis National Research Foundation (ANRF) und die National Institutes of Health Stipendium K99AI110645.
1% Antibiotic-Antimycotic Solution | Corning cellgro | 30-004-Cl | |
3 ml Syringe | Falcon | 309656 | |
35 mm x 10 mm Dish | Corning cellgro | 430588 | |
5 ml Polystyrene Round Bottom Tube | Falcon | 352058 | |
Acetic Acid Glacial | Fisher Scientific | A35-500 | |
Alcian Blue 8GX | Rowley Biochemical Danver | 33864-99-2 | |
Allegra 6R Centrifuge | Beckman | ||
Anti-mouse CD16/32 (clone 93) Purified | eBioscience | 14-0161-81 | |
2-Mercaptoethanol | Sigma Aldrich | M7522 | |
BD 1 ml TB Syringe | BD Syringe | 309659 | |
BD 22G x1 (0.7 mm x 25 mm) Needles | BD Precision Glide Needle | 205155 | |
BD 25G 5/8 Needles | BD Syringe | 305122 | |
BD 30G x1/2 Needles | BD Precision Glide | 305106 | |
Blue MAX Jr, 15 ml Polypropylene Conical Tube | Falcon | 352097 | |
Chloroform | Fisher Scientific | C298-500 | |
Cytoseal 60 Mounting Medium | Richard-Allan Scientific | 8310-4 | |
Cytospin3 | Shandon | NA | |
DakoCytomation pen | Dako | S2002 | |
Dulbecco Modified Eagle Medium (DMEM) 1x | Corning cellgro | 15-013-CM | |
Ethanol | Sigma Aldrich | E 7023-500ml | |
Fetal Bovine Serum Heat Inactivated | Sigma Aldrich | F4135-500ml | |
FITC Conjugated IgG2b K Rat Isotype Control | eBioscience | 14-4031-82 | |
Fluorescein Isotiocyanate (FITC) Conjugated Anti-mouse KIT (CD117; clone 2B8) | eBioscience | 11-1171-82 | |
Formaldehyde | Fisher Scientific | F79-500 | |
Giemsa Stain Modified | Sigma Aldrich | GS-1L | |
Isothesia | Henry Schein Animal Health | 29405 | |
May-Grunwald Stain | Sigma Aldrich | MG-1L | |
Multiwell 6 well plates | Falcon | 35 3046 | |
Olympus BX60 Microscope | Olympus | NA | |
Paraplast Plus Tissue Embedding Medium | Fisher Brand | 23-021-400 | |
PE Conjugated IgG Armenian Hamster Isotype Control | eBioscience | 12-4888-81 | |
Phosphate-Buffered-Saline (PBS) 1x | Corning cellgro | 21-040-CV | |
Phycoerythrin (PE) Conjugated Anti-mouse FceRIa (clone MAR-1) | eBioscience | 12-5898-82 | |
Propidium Iodide Staining Solution | eBioscience | 00-6990-50 | |
Recombinant Mouse IL-3 | Peprotech | 213-13 | |
Safranin-o Certified | Sigma Aldrich | S8884 | |
Tissue culture flasks T25 25 cm2 | Beckton Dickinson | 353109 | |
Tissue culture flasks T75 75 cm2 | Beckton Dickinson | 353110 | |
Toluidine Blue 1 % Aqueous | LabChem-Inc | LC26165-2 | |
Recombinant Mouse SCF | Peprotech | 250-03 |