We describe a method for the generation of in vitro derived mast cells, their engraftment into mast cell-deficient mice, and the analysis of the phenotype, numbers and distribution of engrafted mast cells at different anatomical sites. This protocol can be used to assess the functions of mast cells in vivo.
Mast cells (MCs) are hematopoietic cells which reside in various tissues, and are especially abundant at sites exposed to the external environment, such as skin, airways and gastrointestinal tract. Best known for their detrimental role in IgE-dependent allergic reactions, MCs have also emerged as important players in host defense against venom and invading bacteria and parasites. MC phenotype and function can be influenced by microenvironmental factors that may differ according to anatomic location and/or based on the type or stage of development of immune responses. For this reason, we and others have favored in vivo approaches over in vitro methods to gain insight into MC functions. Here, we describe methods for the generation of mouse bone marrow-derived cultured MCs (BMCMCs), their adoptive transfer into genetically MC-deficient mice, and the analysis of the numbers and distribution of adoptively transferred MCs at different anatomical sites. This method, named the ‘mast cell knock-in’ approach, has been extensively used over the past 30 years to assess the functions of MCs and MC-derived products in vivo. We discuss the advantages and limitations of this method, in light of alternative approaches that have been developed in recent years.
Mast cells (MCs) are hematopoietic cells that arise from pluripotent bone marrow progenitors1-3. Following bone marrow egression, MCs progenitors migrate into various tissues where they develop into mature MCs under the influence of local growth factors1-3. Tissue-resident MCs are strategically located at host-environment interfaces, such as the skin, the airways and the gastrointestinal tract, where they behave as a first line of defense against external insults3-6. MCs are often sub-classified based on their “baseline” phenotypic characteristics and their anatomic locations. In mice, two types of MCs have been described: “connective tissue-type” MCs (CTMCs) and mucosal MCs (MMCs)1-3,7,8. CTMCs are often located around venules and near nerve fibers, and reside in serosal cavities, while MMCs occupy intraepithelial locations in the gut and respiratory mucosa1-3.
Numerous methodologies have been applied to study biological functions of MCs9-13. Many groups have focused on in vitro approaches using either cell lines (such as the human MC lines HMC114 or LAD215,16), in vitro derived MCs (such as human peripheral blood-derived MCs17, or mouse bone marrow-derived cultured MCs [BMCMCs]18, fetal skin-derived cultured MCs [FSCMCs]19 and peritoneal cell-derived MCs [PCMCs]20) or ex vivo isolated MCs from different anatomical sites. All these models are widely used to study molecular details of MC biology, such as signaling pathways involved in MC activation. However, an important aspect of MCs biology is that their phenotypic and functional characteristics (e.g., cytoplasmic granule protease content or response to different stimuli) can be modulated by anatomical location and microenvironment2,7. Since the exact mixture of such factors that are encountered in vivo may be difficult to reproduce in vitro, we favor using in vivo approaches to gain insights into MCs functions9.
Several mouse strains with genetic MC deficiency exist, such as the widely used WBB6F1–Kit W/W-v or C57BL/6-Kit W-sh/W-sh mice. These mice lack expression and/or activity of KIT (CD117), the receptor for the main MC growth factor stem cell factor (SCF)21,22. As a result, these mice have a profound MC deficiency but also have additional phenotypic abnormalities related to their c-kit mutations (in the WBB6F1–Kit W/W-v mice) or to the effects of the large chromosomal inversion that results in reduced c-kit expression (in the C57BL/6-Kit W-sh/W-sh mice)9,10,12,23. More recently, several strains of mice with c-kit-independent constitutive MC deficiency have been reported24-26. All these mice and some additional new types of inducible MC-deficient mice have been recently reviewed in detail9,10,13.
Here, we describe methods for the generation of mouse bone marrow-derived cultured MCs (BMCMCs), their adoptive transfer into MC-deficient mice, and the analysis of the numbers and distribution of adoptively transferred MCs at different anatomical sites. This so-called ‘mast cell knock-in’ method can be used to assess the functions of MCs and MC-derived products in vivo. We discuss the advantages and limitations of this method, in light of alternative approaches that have been developed in recent years.
All animal care and experimentation were conducted in compliance with the guidelines of the National Institutes of Health and with the specific approval of the Institutional Animal Care and Use Committee of Stanford University.
1. Generation and Characterization of Bone Marrow-derived Cultured Mast Cells (BMCMCs).
Note: Donor BMCMCs should be generated from bone marrow cells of the same genetic background as the recipient MC-deficient mice. Male-derived donor BMCMCs are not suitable for engraftment of female mice. Female-derived donor BMCMCs will successfully engraft into both male and female recipients.
2. Engraftment of Mast Cell-deficient Mice with BMCMCs.
3. Analysis of Engrafted Mast Cell-deficient Mice.
An overview of the ‘mast cell knock-in’ approach is shown in Figure 1, and includes the generation of BMCMCs, the number of cells that should be engrafted i.p., i.d. or i.v. into MC-deficient mice (the number can be varied if indicated based on the experimental design) and the interval between engraftment and experiment depending on the injection site (this interval also can vary, if indicated; e.g., the content of stored mediators in MC cytoplasmic granules increases steadily with time38). Figure 2 shows representative flow cytometry analyses and toluidine blue staining of BMCMCs after 1, 15 and 45 days of culture in DMEM medium containing in 20% WEHI-3 cell-conditioned medium as a source of IL-3. Note that BMCMCs cultured for 45 days are 95% pure, contain high numbers of cytoplasmic granules and can be used for engraftment experiments, while cells cultured for 15 days are not suitable for engraftment. Figure 3 shows representative successful engraftment in the ear pinnae 4 weeks after i.d. engraftment (Figure 3A), in mesenteric windows (Figure 3B) and peritoneal cavity (Figure 3C) 6 weeks after i.p. engraftment, and in the lung (Figure 3D) 12 weeks after i.v. engraftment.
Figure 1: ‘Mast cell knock-in’ mouse model for analyses of MC functions in vivo. Wild type or mutant bone marrow-derived cultured MCs (BMCMCs) are generated by culturing bone marrow cells for at least 4-6 weeks in 20% WEHI-3 cell-conditioned medium as a source of IL-3 (or alternatively in medium containing 10 ng/ml recombinant mouse IL-3). These BMCMCs can then be engrafted into MC-deficient mice to create so-called ‘mast cell knock-in’ mice. BMCMCs can be injected via different routes (intravenous [i.v.], intraperitoneal [i.p.] or intradermal [i.d.]) for local (i.d., i.p.) or systemic (i.v.) reconstitution of various MC populations. MC function(s) in various biological responses can then be analyzed by comparing the responses in wild type mice, MC-deficient mice and ‘mast cell knock-in’ mice. The contribution(s) of specific MC products can be analyzed by comparing responses of ‘mast cell knock-in’ mice engrafted with either wild type BMCMCs or BMCMCs derived from mice that lack, or express genetically-altered forms of, such products. (This is a modified version of Figure 1 from ref.12).
Figure 2: Evaluation of the purity of BMCMC preparations by flow cytometry and microscopy. (A) Representative flow cytometry analyses of FcεRIα and KIT (CD117) expression on the surface of 1 day (left panel), 15 days (middle panel) and 45 days (right panel) old BMCMCs. Propidium iodide (PI)-positive dead cells were excluded from the analysis (not shown). Numbers indicate the percentage of FcεRIα+KIT+ BMCMCs gated in the blue square. (B) Representative pictures of BMCMCs stained with toluidine blue, lower panel is a magnification of the regions of the upper panel defined in black dotted lines. Bars = 10 μm.
Figure 3: Evaluation of the efficiency of MC engraftment at various anatomical sites. (A) Representative pictures of 4 μm ear pinnae sections stained with toluidine blue. (B) Representative pictures of mesenteric windows stained with Safranin/Acian Blue (‘Csaba’ stain). (C) Representative pictures of cells present in peritoneal lavage fluids and stained with May-Grünwald Giemsa (MGG). (D) Representative pictures of 4 μm lung sections stained with toluidine blue. Bars = 50 μm (A, B and D) or 20 μm (C). Pictures are from C57BL/6 wild type mice (upper panel), MC-deficient KitW-sh/W-sh mice (middle panel) and MC-deficient mice engrafted with wild type BMCMCs: BMCMCs KitW-sh/W-sh (lower panel). MCs are indicated with arrows.
Mice | Available Backgrounds | MC numbers (steady state) |
Other phenotypes (reviewed in9,10,13) | Reported engraftments with BMCMCs |
KitW/W-v | (WB/Re x C57BL/6)F1 (Jackson Laboratories – WBB6F1/J-KitW/KitW-v/J) |
Absence of connective-tissue and mucosal MCs | Anemia, reduced basophil and neutrophil numbers, deficiencies in melanocytes and interstitial cells of Cajal, sterile, etc. | i.v.35,37; i.p.31,62; i.d.28,29; i.c.50,51; i.a.49; fp.i.63 |
KitW-sh/W-sh | C57BL/6 (Jackson Laboratories – B6.Cg-KitW-sh/HNihrJaeBsmJ) Single nucleotide polymorphism analysis performed at Jackson laboratories shows that these mice are only ~87% C57BL/6-genetic background. |
Absence of connective-tissue and mucosal MCs | Moderate increase in basophil and neutrophil numbers, increased numbers of myeloid-derived suppressor cells64, deficiencies in melanocytes and interstitial cells of Cajal | i.v.23,34-36; i.p.31,62; i.d.28,29; i.a.49 |
C57BL/6J62 (Jackson Laboratories – B6.Cg-KitWsh/HNihrJaeBsmGlliJ) These mice have been backcrossed >11 times on the C57BL/6J background. |
||||
BALB/c65 (C.B6-KitW-sh) |
||||
Mcpt5-Cre; R-DTA |
C57BL/625 (Tg(Cma1-cre) ARoer; B6.129P2-Gt(ROSA)26Sortm1(DTA)Lky/J) |
Marked reductions in peritoneal (98%) and skin (89-96.5%) MCs, mucosal MCs unlikely to be depleted | Probable presence of mucosal MCs; reporter mice reveals Cre-mediated deletion of ‘floxed’ YFP transgene in ~30% spleen NK cells66 | none |
Cpa3Cre/+ | C57BL/626 (B6.129P2-Cpa3tm3(icre)Hrr) |
Absence of connective-tissue and mucosal MCs | Cpa3 expressed in other cell types; reduced basophil numbers | i.v.26 |
BALB/c26 (B6.129P2/OlaHsd.BALB/c-Cpa3tm3(icre)Hrr) |
||||
Cpa3-Cre; Mcl-1fl/fl |
C57BL/624 (Tg(Cpa3-cre)3Glli; B6;129-Mcl1tm3sjkJ) |
Absence of connective-tissue and mucosal MCs | Cpa3 expressed in other cell types; increased spleen neutrophils & mild anemia; reduced basophil numbers |
i.d.24; i.a.49 i.v. (our unpublished data) |
Table 1: Strains of mice with constitutive MC deficiencies. Several strains of mice with c-kit-dependent or c-kit-independent constitutive MC deficiency are available. In principle, all of these strains can be used to generate ‘mast cell knock-in’ mice (although, to the best of our knowledge, this has not yet been reported for Mcpt5-Cre;R-DTA mice). However, each of these strains has other phenotypic abnormalities and limitations that should be kept in mind when interpreting results obtained with these mice. Some examples of successful MC engraftment can be found in the references. (This is a modified and updated version of Table 1 from ref.9).
Almost 30 years after its initial description38, the ‘mast cell knock-in’ approach continues to provide valuable information about what MCs can do or can’t do in vivo. The functions of MCs were long thought to be limited to their role in allergy. Data generated using the ‘mast cell knock-in’ approach have changed this view, by providing evidence that MCs can, among other functions, play critical roles in host defense against certain pathogens4,39 or venoms28,31, or can even suppress certain immune responses29,34,40.
In our protocol description, we decided to focus on the generation and engraftment of bone marrow-derived cultured MCs (BMCMCs), because large numbers of these cells can be generated in vitro from the bone marrow of wild type or mutant mice. However, MCs can also be cultured directly from embryonic stem cells (embryonic stem cell-derived cultured MCs [ESCMCs])41 and, when genetically compatible, these cells can also be used for engraftment into MC-deficient mice. This alternative approach is particularly interesting for studying the role of a protein whose deficiency induces embryonic lethality in mice, and therefore for which BMCMCs deficient for this protein cannot be generated. Both BMCMCs and ESCMCs can also be transduced in vitro with lentiviruses encoding genes of interest or shRNA to silence genes of interest, before engraftment of these cells into MC-deficient mice31,33.
We usually use 20% WEHI-3-conditioned medium as a source of IL-3 for the culture of BMCMCs. However, recombinant IL-3 (10 ng/ml, as described in step 1.2.1) can also be used, and addition of recombinant stem cell factor (SCF) to the culture medium can substantially enhance the numbers of BMCMCs generated42,43. Depending on the study, 10 to 100 ng/ml of recombinant SCF have been used, in addition to IL-3, to generate BMCMCs36,44,45. One should keep in mind that commercially available murine recombinant SCF preparations from different suppliers may differ in their potency in influencing the development of BMCMCs. It is also important to recognize that details of approach used to generate BMCMCs (such as whether one adds recombinant SCF to IL-3-containing medium, the duration of the culture period, etc.) may influence the phenotype and function of such cells. For example, it has been reported that BMCMCs chronically exposed to SCF have increased levels of histamine and certain proteases44,46, but display a marked attenuation of FcεRI-mediated degranulation and cytokine production in vitro45. Finally, in addition to IL-3, WEHI-3-conditioned medium contains many biologically active molecules that may affect MC functions. BMCMCs obtained with WEHI-3-conditioned medium are therefore likely to differ from BMCMCs obtained with recombinant IL-3 (or with recombinant IL-3 plus SCF). There have been few studies of whether or for how long any such differences in the phenotypes of BMCMCs generated in different types of culture medium are retained after the cells’ engraftment into different anatomical sites in vivo, and additional studies of this type may be of interest. However, regardless of the chosen culture conditions, the same culture medium recipe should be used to generate all of the BMCMCs to be used for engraftment in experiments from which results will be pooled for analysis. Moreover, MCs should be cultured for at least 4 to 6 weeks before their engraftment into MC-deficient mice, in order to reach a purity of 95-98% (Figure 2). This is to reduce the possibility that the presence, in the “BMCMC populations”, of hematopoietic cells other than those committed to the mast cell lineage (which are present in the cultures at early intervals after placing the bone marrow cells in vitro) might result in the appearance of donor-derived cells in addition to MCs in the ‘mast cell knock-in’ mice.
We present here a detailed protocol for engrafting MC-deficient mice with wild type or mutant BMCMCs intraperitoneally (i.p.), intravenously (i.v.) or intradermally (i.d.) in the ear pinna, since these routes of injection have been used by many investigators. However, BMCMCs have also been successfully engrafted into the back skin47, in the footpad48, intra-articularly49 or intra-cranially50,51. The number of BMCMCs to engraft, as well as the interval between engraftment and experiment, can vary depending on the route of injection and the targeted organ to engraft (Figure 1). It is very important to respect such intervals after engrafting the BMCMCs before starting the experiment in order to allow sufficient time for BMCMCs (which are not fully mature MCs) to become more mature in vivo. Because the content of mediators stored in the MC’s cytoplasmic granules can continue to increase during the course of the cell’s lifetime38,52, for certain experiments one may wish to increase the interval between MC engraftment and the initiation of the experiment to assess MC function.
Depending on the route of injection and/or the numbers of BMCMCs injected, the numbers and/or anatomical distribution of the adoptively transferred MCs can differ from those of the corresponding native MC populations in wild type mice12,23,53,54. MC-deficient mice engrafted i.p. or i.d. with BMCMCs can have about the same numbers and distribution of MCs than the native MC population in wild type mice, in the peritoneal cavity and mesentery and in the dermis, respectively when assessed 4 to 8 weeks after MC transfer12,23. Intravenous transfer of BMCMCs does not lead to normal MC numbers and/or distribution in most tissues. For example, no or very few MCs are found in the skin of such i.v.-engrafted ‘mast cell knock-in’ mice. At 4-28 weeks after i.v. injection of BMCMCs into MC-deficient mice, numbers of MCs in the trachea are substantially lower than those in the corresponding wild type mice. By contrast, the numbers of MCs in the periphery of the lung are typically greater than those in the corresponding wild type mice12,23,53,55. I.v. transfer of BMCMCs also results in high levels of MCs in the spleen, whereas very few native MCs are typically found in this organ in wild type mice23,56. Importantly, previous reports demonstrated that i.v. injection of BMCMCs into MC-deficient mice fails to result in engraftment of the MC populations in specific anatomical sites such as the spinal cord, lymph nodes or heart54,57. Several groups have also noted that such i.v. engraftment does not result in engraftment of the intestinal mucosal MC (MMC) population23,58-60. Such differences in MC numbers and/or distribution of adoptively-transferred MCs versus native MCs must be taken into account when interpreting data obtained using the MC ‘mast cell knock-in’ model9.
Several strains of MC-deficient mice exist, and choosing which one(s) to use in a particular project is important. c-kit mutant MC-deficient mice, such as KitW/W-v or KitW-sh/W-sh mice, have been traditionally used by many investigators. However, such mice suffer from many c-kit-related phenotypic abnormalities beside their profound MC deficiency (Table 1). In recent years, several strains of mice with c-kit-independent constitutive MC deficiency have been reported24-26. Some of these mice also exhibit other phenotypic abnormalities beside their MC deficiency (Table 1), and additional abnormalities might also be discovered as the phenotype of these newly described strains is still under investigation. All these mice and some additional new types of MC-deficient mice have been recently reviewed in detail9,10,13.
Given the limitations of each of the MC-deficient strains currently available, we recommend attempting to test hypotheses about MC function using more than one model of MC deficiency9. In our laboratory, we generally perform pilot experiments in KitW-sh/W-sh and Cpa3-Cre; Mcl-1fl/fl mice. If we obtain concordant results in both types of MC-deficient mice, we then proceed to engraftment experiments to ascertain the role of MCs and assess the potential roles of certain MC-derived products. Finally, it should be noted that several strains allowing inducible depletion of MCs or Cre recombinase-mediated deletion of “floxed” genes in MCs have also been recently described25,49,61. These strains have been reviewed in detail elsewhere9,10,13 and represent promising alternative – or complementary – approaches to study MC functions in vivo.
The authors have nothing to disclose.
N.G. is the recipient of fellowships from the French “Fondation pour la Recherche Médicale FRM” and the Philipp Foundation; R.S. is supported by the Lucile Packard Foundation for Children’s Health and the Stanford NIH/NCRR CTSA award number UL1 RR025744; P.S. is supported by a Max Kade Fellowship of the Max Kade Foundation and the Austrian Academy of Sciences and a Schroedinger Fellowship of the Austrian Science Fund (FWF): J3399-B21; S.J.G. acknowledges support from National Institutes of Health grants U19 AI104209, NS 080062 and from Tobacco-Related Disease Research Program at University of California; L.L.R. acknowledges support from the Arthritis National Research Foundation (ANRF) and National Institutes of Health grant K99AI110645.
1% Antibiotic-Antimycotic Solution | Corning cellgro | 30-004-Cl | |
3 ml Syringe | Falcon | 309656 | |
35 mm x 10 mm Dish | Corning cellgro | 430588 | |
5 ml Polystyrene Round Bottom Tube | Falcon | 352058 | |
Acetic Acid Glacial | Fisher Scientific | A35-500 | |
Alcian Blue 8GX | Rowley Biochemical Danver | 33864-99-2 | |
Allegra 6R Centrifuge | Beckman | ||
Anti-mouse CD16/32 (clone 93) Purified | eBioscience | 14-0161-81 | |
2-Mercaptoethanol | Sigma Aldrich | M7522 | |
BD 1 ml TB Syringe | BD Syringe | 309659 | |
BD 22G x1 (0.7 mm x 25 mm) Needles | BD Precision Glide Needle | 205155 | |
BD 25G 5/8 Needles | BD Syringe | 305122 | |
BD 30G x1/2 Needles | BD Precision Glide | 305106 | |
Blue MAX Jr, 15 ml Polypropylene Conical Tube | Falcon | 352097 | |
Chloroform | Fisher Scientific | C298-500 | |
Cytoseal 60 Mounting Medium | Richard-Allan Scientific | 8310-4 | |
Cytospin3 | Shandon | NA | |
DakoCytomation pen | Dako | S2002 | |
Dulbecco Modified Eagle Medium (DMEM) 1x | Corning cellgro | 15-013-CM | |
Ethanol | Sigma Aldrich | E 7023-500ml | |
Fetal Bovine Serum Heat Inactivated | Sigma Aldrich | F4135-500ml | |
FITC Conjugated IgG2b K Rat Isotype Control | eBioscience | 14-4031-82 | |
Fluorescein Isotiocyanate (FITC) Conjugated Anti-mouse KIT (CD117; clone 2B8) | eBioscience | 11-1171-82 | |
Formaldehyde | Fisher Scientific | F79-500 | |
Giemsa Stain Modified | Sigma Aldrich | GS-1L | |
Isothesia | Henry Schein Animal Health | 29405 | |
May-Grunwald Stain | Sigma Aldrich | MG-1L | |
Multiwell 6 well plates | Falcon | 35 3046 | |
Olympus BX60 Microscope | Olympus | NA | |
Paraplast Plus Tissue Embedding Medium | Fisher Brand | 23-021-400 | |
PE Conjugated IgG Armenian Hamster Isotype Control | eBioscience | 12-4888-81 | |
Phosphate-Buffered-Saline (PBS) 1x | Corning cellgro | 21-040-CV | |
Phycoerythrin (PE) Conjugated Anti-mouse FceRIa (clone MAR-1) | eBioscience | 12-5898-82 | |
Propidium Iodide Staining Solution | eBioscience | 00-6990-50 | |
Recombinant Mouse IL-3 | Peprotech | 213-13 | |
Safranin-o Certified | Sigma Aldrich | S8884 | |
Tissue culture flasks T25 25 cm2 | Beckton Dickinson | 353109 | |
Tissue culture flasks T75 75 cm2 | Beckton Dickinson | 353110 | |
Toluidine Blue 1 % Aqueous | LabChem-Inc | LC26165-2 | |
Recombinant Mouse SCF | Peprotech | 250-03 |