Capitalizing on a binary genetic strategy we provide a detailed protocol for neural circuit tracing in mice that express complementary transsynaptic tracers after Cre-mediated recombination. Because cell-specific tracer production is genetically encoded, our experimental approach is suitable to study the formation and maturation of neural circuitry during murine embryonic brain development at a single cell resolution.
Anatomical path tracing is of pivotal importance to decipher the relationship between brain and behavior. Unraveling the formation of neural circuits during embryonic maturation of the brain however is technically challenging because most transsynaptic tracing methods developed to date depend on stereotaxic tracer injection. To overcome this problem, we developed a binary genetic strategy for conditional genetic transsynaptic tracing in the mouse brain. Towards this end we generated two complementary knock-in mouse strains to selectively express the bidirectional transsynaptic tracer barley lectin (BL) and the retrograde transsynaptic tracer Tetanus Toxin fragment C from the ROSA26 locus after Cre-mediated recombination. Cell-specific tracer production in these mice is genetically encoded and does not depend on mechanical tracer injection. Therefore our experimental approach is suitable to study neural circuit formation in the embryonic murine brain. Furthermore, because tracer transfer across synapses depends on synaptic activity, these mouse strains can be used to analyze the communication between genetically defined neuronal populations during brain development at a single cell resolution. Here we provide a detailed protocol for transsynaptic tracing in mouse embryos using the novel recombinant ROSA26 alleles. We have utilized this experimental technique in order to delineate the neural circuitry underlying maturation of the reproductive axis in the developing female mouse brain.
Anatomical path tracing is one of the most commonly utilized tools to decipher the relationship between brain and behavior1. Advancement in neural circuit tracing technologies has bestowed neuroscientists with the ability to trace neural circuits from genetically identified neuron populations in mice2. In spite of these technical advancements it remains challenging to unravel the formation of neural circuits especially during embryonic maturation. This is because most of the tracing methods developed to date are based upon stereotaxic injection of transsynaptic tracers or genetically modified neurotropic viruses (Figure 1)2,3. While these techniques achieve spatial and temporal resolution of connectivity, several inherent limitations such as technically challenging tracer injections into the developing brain, the reproducibility of the site of injection, potential inflammation at the injection site and most importantly cytotoxicity caused by neurotropic viruses limit their use4.
An alternative method is to express the transsynaptic tracers as transgenes in genetically altered mice. We have recently modified this technique and developed a binary genetic transsynaptic tracing system to map the neural circuits of any genetically identified neuronal population5. Our experimental strategy is based on two new knock-in mouse strains, which express either the bidirectional tracer barley lectin (BL)6 or the retrograde tracer Tetanus Toxin fragment C fused to GFP (GTT)7 from the ROSA26 locus after Cre-mediated recombination. Here we used these mouse strains to selectively express BL and GTT in neurons that produce kisspeptin, a neuropeptide that is implicated in regulating the maturation of the reproductive axis8,9. We demonstrate that this technique is suitable to visualize the development and maturation of kisspeptin neural circuitry during embryonic development of the female mouse brain5.
Breeding strategy
The R26-BL-IRES-τlacZ (BIZ) and the R26-GFP-TTC (GTT) tracer lines are knock-in strains5 that carry recombinant ROSA26 alleles. The R26-BIZ and the R26-GTT alleles are transcriptionally silent due to the presence of a strong transcriptional stop signal, which is flanked by two loxP sites5. Expression of the BIZ and GTT transgene is activated by Cre-mediated removal of the transcriptional stop signal. The R26-BIZ and R26-GTT alleles can be used independently by simply crossing with a Cre driver line. For analysis animals heterozygous for the respective Cre and R26 alleles can be used. Littermates carrying one Cre or one R26 allele, respectively, should be used as controls. Alternatively, it is also possible to generate triple knock-in animals carrying the Cre, R26-BIZ and R26-GTT alleles, however this will require one additional cross.
NOTE: Ethics Statement: Procedures involving animal subjects were approved by the animal welfare committee of the University of Hamburg and the University of Saarland.
1. Preparation and Fixation of Embryonic Tissue
2. Freezing
3. Cryosectioning
4. Tracer visualization Using the Tyramide Signal Amplification (TSA) Protocol
5. τlacZ Staining for Embryonic Sections
6. Gender and Tracer Genotyping
This section shows representative results that can be obtained working with the R26-BIZ (BL-IRES-τlacZ) and the R26-GTT (GFP-TTC) alleles. Here we use the R26-BIZ and the R26-GTT alleles to analyze the maturation of the neural circuits regulating the reproductive axis. Reproduction in vertebrates is centrally controlled by a small subset of neurons in the hypothalamus, which secrete gonadotropin-releasing hormone (GnRH). Kisspeptin, a potent activator of GnRH neurons, has been implicated in regulating the activity of GnRH neurons, however when the neural circuits between GnRH and kisspeptin neurons are established in the developing female mouse brain was not known5. First we show that expression of the BIZ and GTT transgenes are specifically activated by Cre-dependent recombination in embryonic kisspeptin neurons in the arcuate nucleus (ARC) (Figure 2) using a kisspeptin-specific Cre driver line10. We then demonstrate that kisspeptin neurons in the ARC already communicate with a specific subset of GnRH neurons in utero (Figure 3A, B). Furthermore, we show that ARC kisspeptin neurons are upstream of GnRH neurons (Figure 3A, C). Taken together our findings indicate that the neural circuits between kisspeptin and GnRH neurons are fully established and operative in the female mouse brain before birth.
Figure 1: Transsynaptic transfer of tracers using conventional or genetic approaches. In the conventional approach, a transsynaptic tracer is taken up by all the neurons at the injection site thus potentially labeling non-specific unrelated pathways. In the genetic approach, the tracer is selectively expressed by genetically defined neurons thus specifically visualizing neurons connected to the tracer-expressing cells. Please click here to view a larger version of this figure.
Figure 2: Faithful activation of the BIZ and GTT transgene in embryonic ARC kisspeptin neurons. (A) Breeding strategy to activate BIZ and GTT expression in kisspeptin neurons. We bred R26-BIZ and R26-GTT mice with Kisspeptin-IRES-Cre (KissIC) mice10, in which Cre-recombinase is expressed under the control of the Kiss1 promoter. (C-E) β-gal enzymatic activity identifies the tracer-producing cells and is restricted to the ARC in the brain of a female KissIC/R26-BIZ embryo at embryonic day (E) 18.5. (F-G) Double immunofluorescence for kisspeptin (green) and BL (red) (F) or GTT (red) (G) demonstrates faithful activation of BL or GTT expression by Cre-mediated recombination in kisspeptin neurons in KissIC/R26-BIZ or KissIC/R26-GTT female mouse embryos, respectively. Scale bars (C) 500 µm, (D) 200 µm, (F, G) 50 µm. Please click here to view a larger version of this figure.
Figure 3: GnRH neurons are synaptically connected to and downstream of kisspeptin neurons. (A) Combinatorial genetic bidirectional transsynaptic tracing. While τlacZ is confined to the Cre-expressing kisspeptin neurons, BL is transsynaptically transferred to upstream (presynaptic) and downstream (postsynaptic) neurons in KissIC/R26-BIZ mice. In contrast, GFP-TTC is transsynaptically transferred to presynaptic, but not postsynaptic neurons in KissIC/R26-GTT mice. Postsynaptic neurons have τlacZ-positive axon fibers in their close vicinity. (B, C) Double immunofluorescence for BL (red; B) or GTT (red; C) and GnRH (green) on a sagittal section through the whole head of a female KissIC/R26-BIZ or KissIC/R26-GTT embryo at E18.5. (B) Note that some, but not all GnRH neurons contain BL. These data demonstrate that a subset of embryonic GnRH neurons is synaptically connected to ARC kisspeptin neurons. (C) Note that none of the GnRH neurons contain GTT. Exclusive transsynaptic transfer of BL but not GTT to GnRH neurons demonstrates that GnRH neurons are downstream of kisspeptin neurons. Scale bars (B, C) 50 µm. Please click here to view a larger version of this figure.
Features | Transsynaptic tracers | Neurotropic viruses |
Mode of application | Expressed as a transgene | Mechanically injected |
Direction of spread | Anterograde, retrograde & bidirectional | Retrograde & anterograde |
Synaptic efficacy | Multisynaptic | Multisynaptic or monosynaptic (retrograde only) |
Signal strength | Weak, decreases at every synapse | Strong, signal amplification at every synapse |
Immune response | None; expressed as endogenous protein | Strong immune response, lethal |
Spatial and temporal resolution | Depends on promoter of choice | Highly selective due to mechanical injections at individual sites |
Table 1: Comparison of features of genetic transsynaptic tracers and genetically modified neurotropic viruses
Expressing transsynaptic tracers as transgenes to trace the neural circuits of genetically defined neuronal populations has several advantages compared to the stereotaxic injection of tracers or neurotopic viruses. First, the tracer is produced as an endogenous protein and therefore does not elicit any immune response and a selective neural pathway can be analyzed in different animals with high reproducibility. Second, because this is a non-invasive method it can be utilized to trace the circuits from neurons not easily accessible for stereotaxic injections, for example in utero. Limitations include a generally low efficacy in transsynaptic transfer, which may result in difficulties in detecting the tracer. Furthermore, the tracer molecule gets diluted at every synapse. In contrast, neurotropic viruses replicate and viral replication in turn then leads to signal amplification after crossing the synapse. However, viral replication is also a major limitation of the use of neurotropic viruses due to intrinsic viral cytotoxicity. Some features of genetic transsynaptic tracers and genetically modified neurotropic viruses are compared in Table 1.
The R26-BIZ and R26-GTT alleles complement each other and facilitate the visualization of the neural circuits of a genetically identified neuronal population upon Cre-mediated recombination. The R26 promoter is well characterized and mediates ubiquitous expression with modest strength11,12. Using highly sensitive methods for tracer detection such as the tyramide signal amplification (TSA) system allows the identification of even minute amounts of tracer molecules transferred across synapses. Another major advantage of using the R26 promoter to drive tracer expression is that the expressing neurons continuously synthesize the tracers throughout their life. This makes it possible to analyze circuit maturation for prolonged time periods5. In contrast, this is not possible when using neurotropic viruses due to their cytotoxicity. Importantly, our binary genetic system and the use of the R26 promoter uncouples tracer production from potentially heavily regulated endogenous promoters driving Cre expression (in this case, the Kiss1 promoter), which may be regulated by a variety of genetic and epigenetic factors13. Hence transsynaptic transfer of BL and GTT reflects actual synaptic communication between two neuronal populations.
Cre-mediated recombination is an irreversible event and therefore it converts developmentally transient gene expression into stable transgene expression. The use of an inducible Cre system14 can potentially unmask a developmental effect due to transient Cre expression.
In conclusion, the two novel R26-BIZ and R26-GTT mouse strains can be used to analyze local and long range neural circuits that might be composed of different classes and types of neurons originating from any brain region or even from the spinal cord in a Cre-dependent manner.
The authors have nothing to disclose.
We thank Michael Candlish for critical comments on the manuscript. This project was supported by the Deutsche Forschungsgemeinschaft grants BO1743/6 and SFB/TRR 152 P11 and Z02 to Ulrich Boehm.
Name of Material/ Equipment | Company | Catalog Number | Comments/Description |
Bisbenzimide (Hoechst 33258 dye) | Sigma | 14530-100MG | |
Ethanol | Sigma | 32205-1L | |
Cryo mold (Peel-a-way) | Polyscience Inc. | 18646A-1 | 22mm x 22mm x 20mm |
DMSO | Sigma | D8418-100ML | |
Dimethyl Formamide (DMF) | VWR Chemicals | 23470,293 | |
EGTA | ROTH | 3054.3 | |
Fluoromount G | Southern Biotech | 0100-01 | |
Glutaraldehyde | Sigma | G5882-50ML | |
Hydrogen peroxide | Sigma | 34988-7 | |
Isopentane (Methyl 2-butane) | Sigma | M32631-2.5L | |
Kaiser's Glycine gelatin | Merck | 1092420100 | |
Methanol | Sigma | 494437-1L | |
MgCl2 | Sigma | M2670-100G | |
NaCl | ROTH | HN00.2 | |
NBT | Sigma | 298-83-9 | |
Nonidet P40 substitute | Fluka | 743.85 | |
OCT | Leica | 14020108926 | |
PAP pen | Dako | S2002 | |
Parafarmaldehyde | Sigma | P6148-1KG | |
Sodium deoxycholate | Sigma | D6750-25G | |
Sucrose | Sigma | S7903-1KG | |
Superfrost slides | Thermo Scientific | FT4981GLPLUS | |
TSA kit | PerkinElmer | NEL700 | |
TSA plus kit | PerkinElmer | NEL749A001KT | |
Tris | ROTH | AE15.2 | |
Triton-X 100 | ROTH | 3051.2 | |
Tween 20 | ROTH | 9127.1 | |
X-gal | ROTH | 2315.1 | |
Cryostat | Leica | na | |
Light microscope equipped with DIC imaging | Zeiss | Axioskop2 equipped with Axio Vision software | |
Fluroscence microscope | Zeiss | Axioskop2 equipped with Axio Vision software | |
Photoshop | Adobe | PS6 | |
Goat anti-WGA (recognizes BL) | Vector Laboatories | AS-2024 | |
Biotinylayted horse anti-goat IgG | Vector Laboatories | BA-9500 | |
Biotinylated goat anti-rabbit IgG | Vector Laboatories | BA-1000 | |
Rabbit anti-GFP (recognizes GTT) | Invitrogen | A11122 | |
Rabbit anti-GnRH | Affinity Bio Reagent | PA1-121 | |
Dylight488-donkey anti-rabbit IgG | Thermo Scientific | SA5-10038 | |
SA-Alexa Fluor 546 | Life Technologies | S-11225 | |
Primers | |||
BL Fwd (for BIZ genotyping) | Eurofins MWG Operon | ATGAAGATGATGAGCACCAG GGC |
|
BL Rev (for BIZ genotyping) | Eurofins MWG Operon | AGCCCTCGCCGCAGAACTC | |
Cre Fwd (for Cre genotyping) | Eurofins MWG Operon | GTCGATGCAACGAGTGATGAG GTTCG |
|
Cre Rev (for Cre genotyping) | Eurofins MWG Operon | CCAGGCTAAGTGCCTTCTCTAC ACCTGC |
|
TTC Fwd (for GTT genotyping) | Eurofins MWG Operon | AGCAAGGGCGAGGAGCTGTT | |
TTC Rev (for GTT genotyping) | Eurofins MWG Operon | GTCTTGTAGTTGCCGTCGTCCT TGAA |
|
XY Fwd (for gender genotyping) | Eurofins MWG Operon | TGAAGCTTTTGGCTTTGA | |
XY Rev (for gender genotyping) | Eurofins MWG Operon | CCGCTGCCAAATTCTTTG | |
ROSA26 Fwd | Eurofins MWG Operon | CGAAGTCGCTCTGAGTTGTTATC | |
ROSA26 Rev | Eurofins MWG Operon | GCAGATGGAGCGGGAGAAAT | |
SA Rev | Eurofins MWG Operon | CGAAGTCGCTCTGAGTTGTTATC |