Ribosomes play a central role in protein synthesis. Polyribosome (polysome) fractionation by sucrose density gradient centrifugation allows direct determination of translation efficiencies of individual mRNAs on a genome-wide scale. In addition, this method can be used for biochemical analysis of ribosome- and polysome-associated factors such as chaperones and signaling molecules.
mRNA translation plays a central role in the regulation of gene expression and represents the most energy consuming process in mammalian cells. Accordingly, dysregulation of mRNA translation is considered to play a major role in a variety of pathological states including cancer. Ribosomes also host chaperones, which facilitate folding of nascent polypeptides, thereby modulating function and stability of newly synthesized polypeptides. In addition, emerging data indicate that ribosomes serve as a platform for a repertoire of signaling molecules, which are implicated in a variety of post-translational modifications of newly synthesized polypeptides as they emerge from the ribosome, and/or components of translational machinery. Herein, a well-established method of ribosome fractionation using sucrose density gradient centrifugation is described. In conjunction with the in-house developed “anota” algorithm this method allows direct determination of differential translation of individual mRNAs on a genome-wide scale. Moreover, this versatile protocol can be used for a variety of biochemical studies aiming to dissect the function of ribosome-associated protein complexes, including those that play a central role in folding and degradation of newly synthesized polypeptides.
The regulatory networks that control gene expression have been extensively studied in the last two decades. The vast majority of these research efforts focused on transcriptional regulation, whereby changes in the steady-state mRNA levels on a genome-wide scale were used to determine so-called “gene expression” profiles. Recent studies reveal that steady-state mRNA levels only loosely correspond to the composition of the proteome1,2, thereby indicating that the post-transcriptional mechanisms, including mRNA translation, play a major role in regulation of gene expression3,4. Indeed, it has been estimated that ~50% of protein levels are determined at the level of mRNA translation in immortalized mouse fibroblasts5.
mRNA translation is a highly regulated process during which mRNAs are translated into proteins via orchestrated action of ribosomes, transfer RNAs (tRNAs) and accessory factors commonly referred to as translation factors (TFs)6. Protein synthesis is the most energy consuming process in mammalian cells7 and therefore global mRNA translation rates are adjusted to accommodate nutrient availability and cell proliferation rates8. In addition to alterations in global mRNA translation rates, various extracellular stimuli (e.g. hormones and growth factors), intracellular cues (e.g. amino acid levels) and different types of stress (e.g. ER-stress) induce selective changes in the pools of mRNAs that are being translated (translatome)6. Depending on the type of stimulus, translation activity of some, but not all mRNAs are dramatically affected, thereby resulting in changes in the proteome that are required to mount a rapid cellular response6. These qualitative and quantitative changes in the translatome are thought to be mediated by the interplay between trans-acting factors (e.g. components of translational machinery, auxiliary factors or miRNAs) and cis-elements (RNA elements or features) present in selected subsets of mRNAs6,9. For instance, changes in the levels and/or activity of rate-limiting translation initiation factors eIF4E and eIF2 selectively modulate translation of transcripts based on the specific 5’UTR features6. eIF4E and eIF2 are required for the recruitment of mRNA and initiator tRNA to the ribosome, respectively6. An increase in eIF4E activity selectively bolsters translation of mRNAs harboring long and highly structured 5’UTRs including those encoding proliferation and survival stimulating proteins including cyclins, c-myc and Bcl-xL10. In turn, inactivation of eIF2 leads to a global protein synthesis shut-down, whilst selectively up regulating translation of mRNAs containing short inhibitory upstream open reading frames (uORFs) in their 5’UTRs, such as those encoding master transcriptional regulators of the unfolded protein response (e.g. ATF4). In response to various stimuli including nutrients, growth factors and hormones, the mechanistic/mammalian target of rapamycin (mTOR) pathway stimulates eIF4E activity by inactivating the 4E-binding protein (4E-BP) family of translation suppressors, whereas the MAPK pathway directly phosphorylates eIF4E6,11. In turn, eIF2α kinases (i.e. PERK, PKR, HRI and GCN2) inhibit eIF2 by phosphorylating its eIF2α regulatory subunit in response to nutrient deprivation, ER-stress and virus infection6,12. Alterations in the activity and/or expression of TFs, other components of the translational machinery and regulatory factors including miRNAs have been observed in various pathological states including cancer, metabolic syndromes, neurological and psychiatric disorders, and renal and cardiovascular diseases13-19. Collectively, these data indicate that translational mechanisms play a pivotal role in maintaining cell homeostasis and that their abrogation plays a central role in the etiology of various human diseases.
Herein, a protocol for fractionation of polysomes by sucrose density gradient centrifugation in mammalian cells, which is used to separate polysomes from monosomes, ribosomal subunits and messenger ribonucleoprotein particles (mRNPs) is described. This enables discrimination between efficiently translated (associated with heavy polysomes) from poorly translated (associated with light polysomes) mRNAs. In this assay, ribosomes are immobilized on the mRNA using translation elongation inhibitors such as cycloheximide20 and cytosolic extracts are separated on 5-50% linear sucrose density gradients by ultracentrifugation. Subsequent fractionation of sucrose gradients allows isolation of mRNAs according to the number of ribosomes they bind to. RNA extracted from each fraction can be then used to determine changes in the distributions of mRNAs across the gradient between different conditions, whereby translational efficiency increases from the top to the bottom of the gradient. Northern Blotting or quantitative reverse transcription polymerase chain reaction (qRT-PCR) are used to determine levels of mRNAs in each fraction.
Alternatively, fractions containing heavy polysomes (typically more than 3 ribosomes) are pooled and genome-wide polysome-associated mRNA levels are determined using microarray or deep-sequencing. It is of utmost importance to emphasize that the levels of polysome-associated mRNAs are, in addition to translation, affected by transcriptional and post-transcriptional mechanisms that influence cytosolic mRNAs levels21. Therefore, to determine differences in translation using genome-wide data from polysome-associated mRNA it is necessary to correct for the effects from steps in the gene expression pathway that are upstream of translation21. To allow such a correction, cytosolic RNA is prepared in parallel with polysome-associated RNA from each sample and the genome-wide steady-state mRNA levels are determined21. Currently, so-called “translation-efficiency” (TE) scores (i.e. the log-ratio between polysome-associated mRNA data and cytosolic mRNA data) are often employed to correct for the effects of changes in cytosolic mRNA levels on translation efficiency of a given mRNA22. However, using TE scores to identify differential translation is associated with substantial numbers of false positive and false negative findings due to a mathematical property of the TE scores commonly referred to as spurious correlation27. Indeed a survey of data sets from multiple labs indicated that such spurious correlations seem to be inevitable when analyzing changes in the translatomes23. This prompted development of the “analysis of differential translation” (anota) algorithm, which does not suffer from the aforementioned shortcomings23. During anota-analysis a regression model is used to derive measures of translational activity independent of cytosolic RNA levels. Such measures are then compared between conditions and a statistics is calculated. The user has the option of applying a variance shrinkage method, which improves statistical power and reduces the occurrence of false positive findings in studies with few replicates 24. Significantly, it was recently demonstrated that perturbations in the translatome captured by anota, but not TE scores, correlate with changes in the proteome25. Therefore, it is highly recommended to apply anota analysis for identification of changes in translation on a genome-wide scale. While the theoretical underpinnings of the anota algorithm were discussed in detail previously21,23,26, here focus is on how to apply it in practice.
In addition to studying changes in mRNA translation activity in the cell, this ribosome fractionation protocol can be used to isolate and biochemically and functionally characterize ribosome- and polysome-associated protein complexes. This approach has successfully been deployed in the past to identify complexes that regulate the stability of newly synthesized polypeptides27 and/or are involved in the phosphorylation of components of the translational machinery. This application of the polysome fractionation method will also be briefly discussed.
1. Sucrose Gradient Preparation
2. Isolation and Sedimentation of Polysomes
3. Polysome Fractionation and RNA Extraction
4. Genome-wide Analysis of mRNA Translation
mTOR is a major node of the cellular network that coordinates global protein synthesis rates with nutrient availability19. mRNA translation is regulated mainly at the rate-limiting initiation step6. The proportion of ribosomes engaged in polysomes positively correlates with translation initiation rates28. An example of applying the polysome fractionation method to investigate the role of mTOR signaling in mediating the effects of insulin on mRNA translation is presented. To this end, MCF7 human breast cancer cells were maintained in low serum and then stimulated with insulin alone or in combination with the active-site mTOR inhibitor Torin1. Non-stimulated cells that were continuously kept in low serum, served as a control. mRNPs, monosome (80S) and polysome fractions were separated using the polysome fractionation method. Relative to the control cells, insulin induced an increase in absorbance in gradient fractions corresponding to polysomes, accompanied by a concomitant decrease in absorbance in the monosome fraction (Figure 1). These findings show that the proportion of ribosomes engaged in polysomes is increased in insulin treated as compared to control cells, therefore indicating that, as expected, insulin stimulates global translation initiation rates. Torin1 reversed the effects of insulin on absorbance profiles (Figure 1), thereby corroborating the findings that mTOR signaling plays a major role in mediating the effects of insulin on the translation machinery19.
Based on a tenet that the inconsistencies in gradient preparation cannot be avoided, questions have been raised regarding the reproducibility of the data obtained using the polysome fractionation method22. To empirically test this potentially deleterious issue, cytosolic and heavy polysome-associated RNA (mRNA associated with 4 and more ribosomes) were isolated from MCF7 cells treated with insulin alone or insulin in combination with Torin1 from 4 independent biological replicates (Figure 2). The effects of insulin and Torin1 on the composition of cytosolic and heavy polysome-associated mRNA in each replicate was determined on a genome-wide scale using a microarray approach. To determine the reproducibility of the polysome fractionation method the principal component analysis (PCA) was applied. Such analysis showed that samples belonging to each condition were tightly positioned within the two first components while the different conditions were well separated (Figure 2). These findings show that the polysome fractionation method as described here is highly reproducible and therefore appropriate to study quantitative and qualitative changes in translation on a genome-wide level.
Figure 1. Polysomal profiles showing the effects of serum starvation, insulin and mTOR signaling on global translation in MCF7 cells. MCF7 cells were deprived of nutrients (maintained in 0.1% FBS) for 16 hours and treated with 5 nM insulin (Ins) alone or in combination with 250 nM Torin1 (Ins + Torin1) for 4 hours. Untreated cells that were continuously deprived of nutrients (0.1% FBS) were used as a control. The corresponding cytosolic extracts were sedimented by centrifugation on 5-50% sucrose gradients. Free ribosomal subunits (40S and 60S), monosomes (80S) and number of ribosomes in the polysome fractions are indicated.
Figure 2. Genome-wide data obtained using polysome profiling is highly reproducible. MCF7 cells were treated as in Figure 1. Cytosolic and polysome-associated RNA (>3 ribosomes) was extracted from 4 independent biological replicates and their genome-wide mRNA levels were determined using GeneTitan arrays (Affymetrix). PCA was used to assess the reproducibility of the resulting data. Shown are the first two PCA components for all treatments (T1 = Torin 1; ctrl =control; Ins = insulin), origin of RNA (C = cytosolic; P = polysome-associated) and replicates. Samples from the same condition and RNA origin are closely positioned indicating high reproducibility.
This article describes a well-established polysome fractionation protocol followed by an in-house developed analysis method for capturing qualitative and quantitative changes in translational activity on a genome-wide scale in mammalian cells. For successful completion of this protocol special attention should be paid to 1) Cell confluency (as the proliferation rates and nutrient availability correlate with mRNA translation activity and can affect the composition of the translatome, cell confluency should be consistent across replicates and experimental conditions), 2) Rapid cell lysis (Notwithstanding the presence of cycloheximide and RNAse inhibitors in buffers, lysis should be swift and cellular extracts should be overlaid on sucrose gradients immediately after lysis to prevent RNA degradation and dissociation of polysomes), 3) Gradient preparation (to ensure high data reproducibility, sucrose gradients should be prepared using the gradient maker and special care should be taken when handling them).
In addition to studying the changes in translational activity, this protocol can be used to isolate ribosome-associated protein complexes and establish their physiological functions. To this end, levels and phosphorylation status of various ribosome-associated proteins can be determined by TCA precipitation, followed by Western blotting, whereas ribosome-associated protein complexes can be immunoprecipitated from gradient fractions and analyzed by Western blotting or mass-spectrometry. A shortcoming of this technique is that the slow gradient fraction method could result in dissociation of even tightly bound proteins whose binding kinetics are in rapid association/dissociation. Factors associated to newly synthesized polypeptides are typical examples. Newly synthesized polypeptides emerging form the ribosomes can be immobilized on protein complexes associated with ribosomes using chemical cross-linkers such as 3,3´-dithiobis[sulfosuccinimidylpropionate] (DTSSP)31. This approach revealed that the Receptor for Activated C Kinase 1 (RACK1)/c-Jun N-terminal kinase (JNK)/eukaryotic translation elongation factor 1A2 (eEF1A2) complex regulates degradation of newly synthesized polypeptides in response to stress27. In addition, similar methodology was used in studies showing that the protein kinase C bII (PKCbII) is recruited to ribosomes by RACK132 and that activation of mTOR complex 2 (mTORC2) occurs on the ribosomes where it phosphorylates newly synthesized AKT polypeptides and regulates their stability33,34.
Major limitations of the polysome fractionation method followed by anota analysis are: 1) requirement for a relatively high number of cells (~15 x 106 cells), 2) lack of positional information regarding localization of ribosome on a given mRNA molecule, and 3) issues related to cellular and molecular heterogeneity of normal and tumor tissues. Issues related to required cell number can be resolved by aligning absorbance spectra peaks corresponding to monosomes (80S) of cells whose amounts are limiting with those obtained from high-abundance cells (e.g. HeLa cells) 35. Ribosome profiling technique (see below) can be used to determine exact position of the ribosome on a given mRNA molecule, whereas issues related to confounding effects of tissue heterogeneity on the interpretation of changes in gene expression obtained from complex systems such as human tissues are discussed in detail in a publication by Leek and Storey 36.
Recently, a novel ribosome profiling technique was developed, wherein ribosome protected fragments (RPFs) are generated by RNAse I treatment and analyzed by deep-sequencing22. This technique allows determination of the ribosome position at a single nucleotide resolution, thereby providing hitherto unprecedented insights into ribosome biology. For example, ribosome profiling can be used for determination of ribosome density on a given mRNA molecule or the identification of elements that influence translation initiation rates such as the alternative initiation sites, initiation at non-AUG codons and regulatory elements such as uORFs. However, there are several methodological limitations that restrict the ability of ribosome profiling to accurately estimate mRNA translation efficiency. These include independent biases introduced by random fragmentation and RNAse I digestion, biases introduced by translation inhibitors (e.g. elongation inhibitors such as emetine and cycloheximide are likely to induce ribosome accumulation at translation initiation sites), a large number of false positive and false negative results associated with TE scores as well as their inaccuracy in predicting the reads that originate from protein coding mRNAs37. Perhaps most importantly, whereas ribosome profiling allows direct identification of ribosome position on a given mRNA molecule, the number of ribosomes that is associated with a given mRNA is indirectly estimated by normalizing frequencies of reads in RPFs (ribosome-associated mRNA) over those observed in randomly fragmented mRNAs (total mRNA). For instance, in a simple setting where four “B” mRNA molecules (Ba, Bb, Bc and Bd) are occupied by four ribosomes at the positions 1, 2, 3 and 4, an inherent shortcoming of the ribosome profiling technique will not permit a distinction between a scenario where all 4 ribosomes associate only with a Ba mRNA in positions 1, 2, 3, and 4 and a scenario where Ba, Bb, Bc and Bd mRNA are each occupied by a single ribosome at the position 1, 2, 3, and 4, respectively. In contrast, during polysome fractionation, polysome integrity is preserved, thereby allowing isolation of pools of mRNAs associated with a defined number of ribosomes (Figure 1). This important distinction between polysome fractionation and ribosome profiling suggests that whereas the former method can be used to directly compare mRNAs in mRNP, light and heavy polysome fractions, the latter method will likely fail to capture changes in the translatome that are caused by mRNAs that transition from light to heavy polysomes, while overestimating the contribution of those that shift from the mRNP fraction to heavy polysomes. The biological significance of these discrepancies between the aforementioned methods is underscored by a large body of data showing that translational activation of a subset of mRNAs such as those that are eIF4E-sensitive, transition from light to heavy polysomes, whereas others, such as those harboring 5’TOP elements, are recruited to heavy polysomes directly from pools of ribosome-free mRNA6. Interestingly, the mTOR pathway has been shown to concomitantly modulate translation of “eIF4E-sensitive” and 5’TOP mRNAs11. Therefore, methodological differences that are discussed above may explain the apparent discordance of the conclusion between studies using ribosome profiling38,39 and polysome fractionation24 to assess the effects of mTOR inhibition on the translatome.
In conclusion, polysome fractionation and ribosome profiling are complementary methods that primarily provide information regarding the number of ribosomes associated with mRNA and position of the ribosome on mRNA, respectively. Importantly, notwithstanding the shortcomings and advantages of these methods, it remains essential that the genome-wide data obtained by both procedures are adequately analyzed and functionally and biochemically validated.
The authors have nothing to disclose.
This research was supported by the Canadian Institutes of Health Research grant (CIHR MOP-115195) and FRQ-S to I.T., who is also a recipient of CIHR Young Investigator Award; and the Swedish Research Council and the Swedish Cancer Society to O.L.
HEPES | Biobasic | HB0264 | |
MgCl 2 | Sigma | M8266 | |
KCl | VWR | CABDH4532 | |
Dithiothreitol (DTT) | Biobasic | DB0058 | |
Tris | Biobasic | TB0196 | |
Glycoblue | Ambion | AM9515 | RNA precipitation carrier |
Sodium Deoxycholate | Sigma | D6750 | |
Triton X-100 | Sigma | X100 | |
Cycloheximide | Sigma | C1988 | |
Protease inhibitor cocktail | Roche | 04693132001 | Tablets (EDTA-free) |
RNase inhibitor | Promega | N2515 | |
0.45 µm Filter System 150 ml | Corning | 431155 | |
Sucrose | Sigma | S0389 | |
RNeasy MinElute Cleanup kit | Qiagen | 74204 | RNA cleanup kit |
Thin wall polyallomer ultracentrifuge tubes | Beckman Coulter | 331372 | |
Equipments | |||
SW41Ti Rotor Package with accessories | Beckman Coulter | 331336 | |
Optima L100 XP ultra centrifuge | Beckman Coulter | DS-9340A | |
ISCO fraction collector | Brandel | FC-176-R1 | |
Type II Detector with Chart Recorder | Brandel | UA-6 | UV detector |
Tube Piercer w/Flow Cell and Syringe Pump | Brandel | BR-A86-5 | |
UA-6 Detector Cable | Brandel | 60-1020-211 | |
FC-176 Communication Cable | Brandel | FCC-176 | |
Gradient Master Base Unit | Biocomp | 108-1 | Gradient Maker |
Gradient Forming Attachments | Biocomp | 105-914A-1R | Gradient Maker attachment |
Measurement Computing 8-channel 50kHz Data Acquisition Device | MicroDAQ | USB-1208FS | Analysis software attachment |
Measurement Computing Data Acquisition Software | MicroDAQ | TracerDAQ Pro | Analysis software (Download only) |
Buffers | |||
10X buffer for sucrose gradients: | |||
200 mM HEPES (pH7.6) | |||
1 M KCl | |||
50 mM MgCl2 | |||
100 µg/ml cycloheximide | |||
1x protease inhibitor cocktail (EDTA-free) | |||
100 units/ml RNase inhibitor | |||
Lysis buffer | |||
5 mM Tris-HCl (pH7.5) | |||
2.5 mM MgCl2 | |||
1.5 mM KCl | |||
1x protease inhibitor cocktail (EDTA-free)] | |||
Then add cycloheximide (CHX), DTT, RNAse inhibitor, Triton and Sodium Deoxycholate as indicated in the main text |