A structured protocol is presented for a cell-based assay as a functional test to predict the prognosis of idiopathic scoliosis using cellular dielectric spectroscopy (CDS). The assay can be performed with fresh or frozen peripheral blood mononuclear cells (PBMCs) and the procedure is completed within 4 days.
This protocol details the experimental and analytical procedure for a cell-based assay developed in our laboratory as a functional test to predict the prognosis of idiopathic scoliosis in asymptomatic and affected children. The assay consists of the evaluation of the functional status of Gi and Gs proteins in peripheral blood mononuclear cells (PBMCs) by cellular dielectric spectroscopy (CDS), using an automated CDS-based instrument, and the classification of children into three functional groups (FG1, FG2, FG3) with respect to the profile of imbalance between the degree of response to Gi and Gs proteins stimulation. The classification is further confirmed by the differential effect of osteopontin (OPN) on response to Gi stimulation among groups and the severe progression of disease is referenced by FG2. Approximately, a volume of 10 ml of blood is required to extract PBMCs by Ficoll-gradient and cells are then stored in liquid nitrogen. The adequate number of PBMCs to perform the assay is obtained after two days of cell culture. Essentially, cells are first incubated with phytohemmaglutinin (PHA). After 24 hr incubation, medium is replaced by a PHA-free culture medium for an additional 24 hr prior to cell seeding and OPN treatment. Cells are then spectroscopically screened for their responses to somatostatin and isoproterenol, which respectively activate Gi and Gs proteins through their cognate receptors. Both somatostatin and isoproterenol are simultaneously injected with an integrated fluidics system and the cells' responses are monitored for 15 min. The assay can be performed with fresh or frozen PBMCs and the procedure is completed within 4 days.
Idiopathic scoliosis is a spine deformity of unknown cause generally defined as a lateral curvature greater than 10 degrees accompanied by a vertebral rotation1. The condition affects 4% of the pediatric population and is most commonly diagnosed between the ages of 9 to 13 years2,3,4. The diagnosis is primarily of exclusion and is made only after ruling out other causes of spinal deformity such as vertebral malformation, neuromuscular or syndromic disorders. Traditionally, the trunkal asymmetry is revealed by Adams forward bending test and measured with scoliometer during physical examination5. The diagnosis can then be confirmed by radiographic observation of the curve and the angle measurement using the Cobb method6.
Once diagnosed, the primary concern for physicians in managing scoliotic children is whether the curve will progress. Indeed, the curve progression is often unpredictable and is more frequently observed among girls than in boys7. If untreated, the curve can progress dramatically, creating significant physical deformity and even cardiopulmonary problems. These manifestations become life threatening when the curve exceeds 70° 8,9. The current treatment options to prevent or stop curve progression include bracing and surgery. In general, bracing is recommended for curves between 25-40°, while surgery is reserved for curves greater than 45° or unresponsive to bracing.
Approximately, 10% of children diagnosed with idiopathic scoliosis have curve progression requiring corrective surgery10. Currently, there is no proven method or test available to identify this category of patients. Consequently, all diagnosed children are subjected to multiple radiographs over several years, usually until they reach skeletal maturity. It is estimated that the typical patients with scoliosis will have approximately 22 radiological examinations over a 3-year period11. Because of the potential risk of multiple radiographic examinations, the alternative approaches that could allow performing the prognosis of idiopathic scoliosis without exposing children to ionizing radiation are strongly desirable. With the intention of meeting this need, we have previously developed a cell-based screening assay as a prognostic test to sooner identify the asymptomatic children at risk of developing idiopathic scoliosis. The test predicts the clinical outcome in both asymptomatic and affected children by examining the functional status of Gi proteins and classifying children into three functional groups (FG1, FG2 and FG3) according to the degree of maximum response to Gi protein stimulation12 as measured by CDS-based system. This system is largely used to assess signal transduction through G proteins in various cell types13,14,15,16. It yields information regarding the total integrated response of the cells to the external stimuli by measuring changes in impedance following the activation of cell surface receptors. Cells are seeded into microplates that contain electrodes at the bottom of the wells and the system applies a small voltage that induce extracellular and transcellular currents. Following compound injection into the well, cell surface receptors are stimulated and signal transduction events occur, leading to cellular changes that affect the flow of extracellular and transcellular currents, and thereby affect the measured magnitude. With this approach, the scoliotic patients and children more at risk of developing scoliosis are less responsive to Gi protein stimulation when compared with healthy control subjects, and the classification is based on the percentage of degree of reduction relative to control group. The classification ranges are fixed between 10 and 40% for FG3, 40 and 60% for FG2, and 60 and 90% for FG112.
More recently, we have modified this approach by demonstrating that the three functional groups can clearly be distinguished according to the profile of imbalance between response to Gi and Gs stimulation. Indeed, we found that response to Gi stimulation predominated in FG3, while no apparent imbalance was observed in FG2. In contrast, FG1 exhibited predominance for response to Gs stimulation. In addition, we have provided the evidence that patients belonging to FG2 are more at risk of progressing to the point of needing surgery17. The precision of this classification test has further been improved by demonstrating a differential effect of osteopontin (OPN) on response to Gi stimulation among functional groups.
Here we document the detailed steps of experimental and analytical procedures of this functional test as currently performed in our laboratory.
The entire procedure is carried out under the sterile biological hood and all solutions and equipment coming into contact with cells must be sterile.
1. Preparation of Essential Solutions
2. Preparation and Storage of PBMCs
3. Functional Assay
1. Day 1
2. Day 2
3. Day 3
4. Day 4
Cell viability was comparable among all samples with values consistent in the range of 86 and 96%. In contrast, high variations were noted in cell numbers among samples (Table 3). Of the 32 samples used, two had insufficient number of cells and have not been classified. An example of results of the functional classification according to the degree of imbalance between Gi and Gs signaling is showed in Figure 3. The vertical axis of this figure is divided into three sections delineating the functional groups with dynamic ranges established as > +10 for FG3, between +10 and -10 for FG2, and finally < -10 for FG1. Among 30 patients tested here, 14, 6, and 5 patients were clearly classified into FG3, FG2, and FG1, respectively, while five patients, notably 345, 353, 370, 371, and 382, were at borderline of ranges. The evaluation of the OPN effect on response to Gi stimulation had revealed that OPN increased the response in patients 353 and 371. In contrast, response was reduced by more than 50% in patients 345 and 382 and by less than 50% in patient 370 following rOPN treatment. So, according to our classification criteria (Table 2), we were able to categorize patients 353 and 371 in FG1, patients 345 and 382 in FG2, and patient 370 in FG3. In parallel, all patients were screened for their response to Gi protein stimulation and compared to control subjects. As expected, all patients were less responsive than control subjects, and patients classified in the same functional group by our new procedure exhibited similar levels of the maximum response (Figure 5). Moreover, disparity between patients of each functional group was consistent with our classical range of classification 12, validating our new procedure. The classification of a large cohort of scoliotic patients regularly followed in our special clinic at Sainte-Justine Hospital has revealed that the three functional groups were similarly distributed among moderate cases, while the FG2 was predominant among severe cases (Figure 6), identifying patients categorized into this functional group as more at risk for severe progression of the disease and indicating that this classification test can be useful in the prognosis of idiopathic scoliosis.
Solution A | Anhydrous D-glucose | 0.1% |
CaCl2 2H2O | 0.05 mM | |
MgCl2 | 0.98 mM | |
KCl | 5.4 mM | |
Tris | 145 mM | |
Solution B | NaCl | 140 mM |
Balanced Salt Solution (BSS) | Solution A | 1 volume |
Solution B | 9 volume | |
Complete media | RPMI-1640 | 500 ml |
Antibiotic-antimycotic | 1% | |
FBS | 10% | |
Supplementary media | RPMI-1640 | 50 ml |
Antibiotic-antimycotic | 1% | |
FBS | 40% | |
Freezing media | RPMI-1640 | 50 ml |
Antibiotic-antimycotic | 1% | |
FBS | 40% | |
DMSO | 20% | |
PHA media | RPMI-1640 | 500 ml |
Antibiotic-antimycotic | 1% | |
FBS | 10% | |
Phytohemaglutinin | 1% |
Table 1. Essential solutions.
Dynamic ranges with ΔG | Functional Groups | Dynamic ranges with Fe |
ΔG< -10 | FG1 | Fe>100% |
-10 <ΔG< +10 | FG2 | Fe<50% |
ΔG> +10 | FG3 | 50%<Fe<95% |
Table 2. Categorization of functional groups according to dynamic ranges established with ΔG and Fe.
Patients | Viability (%) | Cell concentration (×106/ml) | Comments |
343 | 88.7 | 11.64 | |
344 | 90.5 | 13.6 | |
345 | 94.4 | 8.54 | |
346 | 94.3 | 25.79 | |
347 | 94.2 | 27.36 | |
348 | 94.6 | 8.52 | |
349 | 91.2 | 0.82 | Insufficient number of cells |
350 | 90.3 | 8.92 | |
352 | 92.6 | 8.28 | |
353 | 91.3 | 12.75 | |
354 | 86.9 | 7.62 | |
355 | 91.2 | 7.51 | |
356 | 90.3 | 9.36 | |
358 | 95.1 | 16.94 | |
359 | 92.3 | 13.89 | |
360 | 89.4 | 7.67 | |
361 | 93.5 | 7.84 | |
365 | 86.5 | 2.2 | Insufficient number of cells |
368 | 92.6 | 15.69 | |
369 | 93.4 | 10.9 | |
370 | 92.5 | 19.93 | |
371 | 88.8 | 10.68 | |
374 | 93.9 | 16.86 | |
376 | 92.9 | 15.67 | |
377 | 93.1 | 9.99 | |
378 | 93.6 | 13.57 | |
379 | 92.6 | 19.86 | |
380 | 91.1 | 8.46 | |
381 | 93.9 | 14.82 | |
382 | 92.1 | 23.06 | |
383 | 92.9 | 11.82 | |
384 | 89.1 | 7.73 |
Table 3. Percent viability and cell concentration as determined using an automated cell counter and viability analyzer.
Figure 1. Design for cell seeding.
Figure 2. Design for dispensing compounds.
Figure 3. Dynamic range of the functional classification using the CDS-based system. Graph illustrates values of the degree of imbalance between responses to Gi and Gs stimulation obtained in PBMCs from patients with idiopathic scoliosis. Values were measured by the CDS-based system in response to 10 μM of somatostatin and isoproterenol. Each point represents the ΔG of both responses in duplicate.
Figure 4. Effect of rOPN on response to Gi stimulation in PBMCs. Cells were serum-starved for 18 hr in the presence or absence of 0.5 μg/ml rOPN and then stimulated with 10 μM of somatostatin to initiate Gi-mediated cellular response. Data in the graph were generated from maximum-minimum impedance and correspond to the average of response in duplicate.
Figure 5. Functional status of Gi protein in PBMCs from control and scoliostic subjects. PBMCs from control subjects and scoliotic patients were exposed to increasing concentrations of somatostatin to stimulate Gi proteins via endogenous somatostatin receptor. The cellular response was measured by CDS-based system as described in the procedure section. Curves were generated from maximum-minimum impedance. Each curve represents the nonlinear regression. Data were normalized to maximal response in cells from control subjects and each point corresponds to the average of response in duplicate. Click here to view larger figure.
Figure 6. Distribution of functional groups among different phases of scoliosis. A large cohort of scoliotic patients with 794 moderate (curvatures between 10-44°) and 162 severe (curvature greater than 45°) cases regularly followed at Sainte-Justine Hospital, were classified according to their degree of imbalance between response to Gi and Gs stimulation. Responses were measured by the CDS-based system in response to 10 μM of somatostatin and isoproterenol.
We have described a detailed procedure of a cell-based prognostic test for idiopathic scoliosis that is applicable to peripheral blood mononuclear cells (PBMCs) freshly isolated or conserved frozen for up to one year in liquid nitrogen. Since using freshly isolated PBMCs is cumbersome when testing large number of individuals, the procedure was presented with frozen PBMCs that offer a more practical alternative in clinical setting. However, problems with cell clumping upon thawing were encountered when frozen PBMCs were initially used, leading sometimes to inter-assay variability. To maximize assay reproducibility, we recommend avoiding freeze-thaw cycle and using the frozen sample only once. The procedure is very simple, allowing for accurate detection of defective Gi protein function in a short time. Using this procedure, asymptomatic and scoliotic children can be easily classified to better predict their clinical outcome without any danger for their health. However, when performing classification according to the degree of maximum response to Gi stimulation relative to the healthy control subjects 12, several requirements for the control subjects should be met. Indeed, in order to have a proper comparison cohort, the control subjects must be age and gender matched, not be on any kind of medication, and provide private information, such as past individual/familial medical history. These requirements may constitute an important obstacle for the recruitment of control subjects. Therefore, performing classification by examining the degree of imbalance between response to Gi and Gs protein stimulation in the same individual is ideal to eliminate the necessity of using control subjects.
The use of the CDS-based system to perform this prognostic test is significant in terms of simultaneously providing Gi- and Gs-mediated cellular responses in the same assay. Although many patients can be classified with no ambiguity using the dynamic range fixed for this assay, a small number of patients will exhibit values at the borderline of ranges, as illustrated by the results of the present report. To discriminate these individuals, we have introduced the evaluation of the effect of OPN on response to Gi stimulation by demonstrating that OPN induces a differential effect on Gi-mediated cellular response among the three functional groups. Indeed, we found that in presence of OPN, response to Gi stimulation increases in FG1, while it decreases in FG2 and FG3, to a higher extent in FG2. Despite the high cost of OPN, the use of this chemokine is essential to distinguish ambiguous cases, and therefore improve the accuracy of our classification assay. However, this assay has a disadvantage in that a minimum of 1.5 x 105 cells per well is required to observe cellular response with the CDS-based system under our experimental conditions. Certain patient samples will not have a sufficient number of cells to be tested. In this case, it is necessary to recall the patients for additional blood collection, which can be worrisome for families and frustrating for the medical and laboratory staff. Prospective studies are planned in our laboratory to address this issue.
Nevertheless, the current protocol relies on simple and proven methods to prepare cells while the testing is automated using a validated label-free system 13, 14 to monitor the cells' responses. The testing platform is relatively inexpensive when compared with genetic platform available for the prognosis of other diseases. Also, the cost of all the disposable materials, including the blood collection tubes, tips, the special electrode microplates, and conical and Eppendorf tubes, is not very expensive and is estimated at less than $3,000 to complete a testing for approximately one thousand patients. Though this estimate does not include labor costs for the preparation of samples and performing the test, this test remains considerably more affordable than next-generation sequencing platforms. Noteworthy, is not only the cost comparison to genetic platforms, but more specifically related to the field of AIS, is the costs associated to radiological imaging. Today, more than one million children in the USA and about 100,000 children in Canada are diagnosed with idiopathic scoliosis, and the total cost of diagnosis and monitoring of the scoliotic children by X-ray exposure is over 2.5 billion dollars annually in North America. Thus, our cell-based assay procedure would be expected to be suitable for routine screening and monitoring of children with idiopathic scoliosis without health risk and at lower cost.
The authors have nothing to disclose.
This work was supported by grants from La Fondation Yves Cotrel de l’Institut de France, Paris, France (to Dr. Moreau), The Canadian Institutes of Health Research (grant PP2-99466 to Dr. Moreau) and from Fourth Dimension Spine LLC, New York, USA (Research grant to Dr. Moreau).
Materials | |||
RPMI | Wisent, Inc | 350-005-CL | |
FBS | Therno Scientific Hyclone | SH3007103 | |
DMSO | Sigma Aldrich | D2650 | |
Ficoll-Plaque Plus | GE Healthcare | 17144003 | |
Antibiotic-Antimycotic | Invitrogen | 15240-062 | |
Phytohemagglutinin | Invitrogen (Gibco) | 10576-015 | |
Recombinant Human Osteopontin | R&D Systems, Inc | 1433-OP/CF | |
Somatostatin | Tocris | 1157 | |
Isoproterenol | Tocris | 1743 | |
PBS | Wisent, Inc | 311-010-CL | |
Sterile pipette tips | Axygen Scientific | 301-06-451 | |
Sterile Eppendorf tubes | Ultident | 24-MCT-150-C | |
50 ml conical tubes | VWR International | 89039-658 | |
Cellkey small sample 96W microplate | Molecular Devices | 1026496 | |
Cellkey tips | Cybio | OL3800-25-559N | |
Precut pierceable seals | Excel Scientific, Inc | XP-100 | |
Equipment | |||
Vicell XR | Beckman Coulter | 731050 | Automated cell counter |
Cell culture hood | Forma Scientific | 1284 | Class II |
Liquid nitrogen storage | Thermo Scientific | CY5093570 | |
Water bath | VWR International | 89032-204 | |
Standard light microscope | Leica Microsystems | DMIL LED | |
Cell culture incubator | Thermo Scientific | 51019557 | 5% CO2 at 37 °C |
Low speed centrifuge | Thermo Scientific | 75004364 | |
Cellkey system | Molecular Devices | 1019185 | CDS-based instrument |