Mammalian integument contains solvent-extractable lipids that can provide chemical compositions characteristic of individual species. This paper presents a routine method for separating broad lipid classes isolated from integumentary tissues using thin layer chromatography and determining the triacylglyceride profile by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry.
The mammalian integument includes sebaceous glands that secrete an oily material onto the skin surface. Sebum production is part of the innate immune system that is protective against pathogenic microbes. Abnormal sebum production and chemical composition are also a clinical symptom of specific skin diseases. Sebum contains a complex mixture of lipids, including triacylglycerides, which is species-specific. The broad chemical properties exhibited by diverse lipid classes hinder the specific determination of sebum composition. Analytical techniques for lipids typically require chemical derivatizations that are labor-intensive and increase sample preparation costs. This paper describes how to extract lipids from mammalian integument, separate broad lipid classes by thin-layer chromatography, and profile the triacylglyceride contents using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. This robust method enables a direct determination of the triacylglyceride profiles among species and individuals, and it can be readily applied to any taxonomic group of mammals.
Mammalian integumentary tissues include the epidermis, keratinous structures (e.g. hair and nails), and exocrine glands. Sebaceous-type exocrine glands are associated with hair follicles, which are collectively referred to as the pilosebaceous unit1. Sebaceous glands release an oily exudate onto the skin surface referred to as sebum. Sebum is composed largely of glycerolipids (e.g. triacylglycerides [TAGs]), free fatty acyls (FFAs), sterol/wax esters, and squalene. Sebum's chemical composition is species-specific2. In addition to being part of the innate immune system and providing antimicrobial function3, sebaceous lipids affect important physiological processes including evaporative water loss through skin4, cellular integrity and gene regulation5, and drug absorption6. Sebaceous lipid compositions can also serve as disease markers. Altered ratios and amounts of sebaceous broad lipid classes are clinical signs of diseases such as acne vulgaris7, dandruff8, seborrheic dermatitis8, asteatosis9, among others10. Epidermal and hair tissues include variable profiles containing sterol and derivatives, TAGs, FFAs, ceramides, phospholipids, and other minor lipid components. Because integumentary lipids can function in disease processes, determining differences in chemical compositions of TAGs between healthy and diseased individuals may be useful for clinical diagnosis of disease.
Lipids are generally defined as being water-insoluble organic compounds with either nonpolar or nonpolar-polar substituents11. Lipid structures may be long hydrocarbon chains, oxygenated alkanes (including wax esters, FFAs, alcohols, ketones, and aldehydes), or complex ring structures such as cholesterol12. There are eight major classes of lipids based on structure (FFAs, glycerolipids [GL], glycerophospholipids [GP], sphingolipids [SP], sterol lipids [ST], prenol lipids [PR], saccharolipids [SL], and polyketides [PK]), which exhibit a wide range of chemical properties depending on the class13. Due to the wide variation in the chemical properties of lipid classes, direct profiling without prior derivatization of lipid molecules is desired. One emergent method in lipid research is thin-layer chromatography (TLC) combined with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS)14.
MALDI-TOF MS is used extensively in proteomic research to identify proteins and associate them to specific amino acid sequences due to the highly accurate peptide ion mass "fingerprints" generated from trypsin-digested proteins15. MALDI-TOF MS can also be used to profile other biomolecule classes, including lipids such as TAGs16-18. MALDI requires the use of a matrix, typically an organic compound that contains aromatic and conjugated double bond structures. The matrix molecules serve to gently transfer the energy of the laser to the analytes, promote proton transfer, and produce singly charged gas-phase ions19-21. Ions are subjected to a high voltage field under high vacuum and accelerated into a TOF mass analyzer where ions are subsequently separated by differences in velocities that are proportional to their mass-to-charge ratios. Even very large biomolecules can be ionized with little fragmentation, producing singly charged molecular ion species for simplified spectrum analysis. The ability to analyze lipid molecules directly without prior derivatization has promoted ready adoption of MALDI-TOF MS in lipidomic research18.
This paper presents a routine method to isolate and analyze integumentary lipids from the hair, sebaceous secretions and plagiopatagium of the Eastern red bat (Lasiurus borealis). This is used to determine interspecific variations in bat integumentary lipids to elucidate the disease process of White-Nose Syndrome (WNS)22. WNS is a fungal disease of bats and is caused by the newly described psychrophilic species Geomyces destructans23-25. WNS has caused the death of over 5 million North American cave bats and threatens the extinction of vulnerable bat species, with potential economic impacts of billions of dollars in damage to the agricultural industry26,27. To investigate the steps in G. destructans infection, lipids were extracted from the hair and wing tissues of Eastern red bats and separated into broad lipid classes by TLC to isolate the TAG fraction for subsequent analysis by MALDI-TOF MS. TAGs contain short acyl chains and are easily detected by MALDI-TOF MS with little matrix interference.
CAUTION: Obtain in advance all requisite state and federal permits for handling, transporting, and storing bats. Approvals must also be obtained from your institutional animal care and use committee, as well as from your institutional biosafety committee. If live bats (or nervous system tissue) are to be handled, animal handlers should be vaccinated for rabies. Bats used in the current study were collected from the Ozark St. Francis National Forest, AR, during summer 2010 according to standard methods (Arkansas State University's Institutional Biosafety Committee approval # 135349-1)28.
1. Tissue Treatment and Lipid Extraction
2. Lipid Separation by Preparative Thin-layer Chromatography
3. TAG Analysis by MALDI-TOF MS
INSTRUMENT: The mass spectrometer used in this study is a Waters MALDI Micro MX (equipped with a 337 nm 20 Hz N2 laser). Any manufacturer's MALDI instrument with positive reflectron mode capability can be used. General settings used are pulse voltage, 2,000 V; reflectron, 5,200 V; source, 15,000 V, with data acquisition using MassLynx software (ver. 4.0). These operating conditions provide mass resolution greater than 12,000.
The extraction method for isolating total lipids from tissue described by Folch30 is a straightforward procedure, which is adapted here. After tissue extraction and solvent evaporation, the lipids often appear as a yellowish film. The yellow color most likely is from protein contaminants, which can be removed by performing a liquid-liquid extraction. This additional sample processing is not needed in this procedure because preparative TLC separates the TAG fraction from such contaminants. The addition of fresh anhydrous sodium sulfate at all filtering stages helps reduce water contamination that affects accurate lipid weight determinations.
Mammalian integumentary lipid analyses by preparative TLC with H:E:A as the mobile phase will usually resolve four distinct bands corresponding to (starting from origin) sterols, FFAs, TAGs, and sterol esters/wax esters/squalene (Figure 1). On occasion when using analytical high performance (HP) TLC with the H:E:A mobile phase, the sterol esters, waxy esters, and squalene will separate and appear as three separate bands. Under the conditions used in the present study, the sterol/waxy esters are not separated. If these bands are of interest, the mobile phase can be switched to isooctane:ethyl ether (95:5 v/v), and the HPTLC plate can be analyzed by scanning densitometry. Other factors can cause poor separation. These are usually eliminated by placing the filter paper in the chamber, applying grease for a tight seal on the lid, equilibrating the chamber overnight, and keeping clean TLC chambers, to obtain consistent quality TLC separations and data.
Representative MALDI-TOF mass spectra obtained for TAGs isolated from the Eastern red bat are shown in Figures 2 and 3. These spectra contain TAG ion peaks in the mass range between m/z 850 – 910, which is typical for TAGs isolated from non-aquatic mammals. The addition of 1.0 M NaOH promotes singly charged Na+ ions that are more stable than H+ ions. In addition to stability, the absence of H+ and K+ ions increases ease of spectrum analysis. The m/z 850 – 910 ion peaks correspond to 16:0, 18:0, 18:1, and 18:2 FA moieties being the dominant acyl constituents in TAGs (Table 1). Possible FA moieties of TAGs can be initially determined by total ion m/z present in MALDI-TOF MS spectra, and differences among species and individuals deduced. However, if the specific ratios of acyl content are required, then MS/MS or gas chromatography (GC/MS) must be used. Further information on acyl ratios can be deduced by observing the peaks in the diacylglycerides region of the spectrum (Figure 4). Diacylglycerides are produced from TAG fragmentation in the MALDI source and can be found in the m/z 590 – 650 region. TAG fragmentation can be increased by omitting the addition of 1.0 M NaOH16. Eastern red bat wing tissue is characterized by a dominant peak at m/z 879.7 and hair tissue with a dominant peak at m/z 881.8 (Figure 2 and 3 respectively). Peaks at m/z 907.8, 879.7, and 855.7 (POP, PPoS) are approximately even in intensity (~50%) in hair tissue with the peak at 853.7 being ~40%.
Composition | Elemental Composition | Observed Mass |
Na+TAGs | Na+TAGs | |
SSO | C57H108O6 | 911.8 |
OOS, LSS | C57H106O6 | 909.8 |
OOO, LnSS, LSO | C57H104O6 | 907.8 |
LOO, LLS | C57H102O6 | 905.8 |
LLO, OOLn | C57H100O6 | 903.7 |
LLL | C57H98O6 | 901.7 |
LLLn | C57H96O6 | 899.7 |
LLnLn | C57H94O6 | 897.7 |
LnLnLn | C57H92O6 | 895.7 |
OSP | C55H104O6 | 883.8 |
LSP, OOP, SOPo | C55H102O6 | 881.8 |
LOP, LnSP, LSPo | C55H100O6 | 879.7 |
LLP, LnOP, LOPo | C55H98O6 | 877.7 |
LnLP, LLPo, LnOPo | C55H96O6 | 875.7 |
LnLnP, LnLPo | C55H94O6 | 873.7 |
LnLnPo | C55H92O6 | 871.7 |
PPS | C53H102O6 | 857.8 |
POP, PPoS | C53H100O6 | 855.7 |
OOM, PPL, PoPoS, POPo | C53H98O6 | 853.7 |
PPLn, PPoL, PoPoO, MyOO | C53H96O6 | 851.7 |
LLM, LnOM | C53H94O6 | 849.7 |
PPP, SSLa | C51H98O6 | 829.7 |
PPPo, OSLa | C51H96O6 | 827.7 |
PPoPo, PMyO | C51H94O6 | 825.7 |
LnLnLa | C51H86O6 | 817.6 |
MMS, SLaP, PPM | C49H94O6 | 801.7 |
SLaPo, PPoM, PPMy | C49H92O6 | 799.7 |
PoPoM, OOCa | C49H90O6 | 797.7 |
MMP | C47H90O6 | 773.7 |
MMPo, OCaP | C47H88O6 | 771.7 |
OCaPo | C47H86O6 | 769.6 |
MMM, PPCa, PMLa | C45H86O6 | 745.6 |
PoPCa, PoMLa | C45H84O6 | 743.6 |
PoPoCa | C45H82O6 | 741.6 |
LaLaP, MMLa, MCaP | C43H82O6 | 717.6 |
LaLaPo | C43H80O6 | 715.6 |
OO | C39H72O5 | 643.5 |
OL | C39H70O5 | 641.5 |
LL | C39H68O5 | 639.5 |
SP | C37H72O5 | 619.5 |
OP | C37H70O5 | 617.5 |
LP | C37H68O5 | 615.5 |
Table 1. Fatty acid composition, elemental composition, and isotopic mass of sodiated adducts of triacylglycerides and diacylglycerides. Ln=linolenic acid (18:3), L=linoleic acid (18:2), O=oleic acid (18:1), S=stearic acid (18:0), P=palmitic acid (16:0), Po=palmitoleic acid (16:1), M=myristic acid (14:0), My=myristoleic acid (14:1) La=lauric acid (12:0), Ca=Capric acid (10:0).
Figure 1. Thin-layer chromatogram of broad lipid class separation by hexane:diethyl ether:acetic acid (80:20:2 v/v/v) as the mobile phase. The band between sterol and FFA was not identified by a standard but may be a fatty alcohol or wax diester.
Figure 2. Expanded TAG region of MALDI-TOF mass spectrum of sodiated TAGs (m/z 700 – 950) from Eastern red bat (L. borealis) wing tissue. Peaks identified at m/z 853.7 (OOM, PPL, PoPoS, POPo) and m/z 879.7 (LOP, LnSP, LSPo). Click here to view larger figure.
Figure 3. Expanded TAG region of MALDI-TOF mass spectrum of sodiated TAGs (m/z 700 – 950) from Eastern red bat (L. borealis) hair tissue. Peaks identified at m/z 905.8 (LOO, LLS) and m/z 907.8 (OOO, LnSS, LSO). Click here to view larger figure.
Figure 4. DAG region of MALDI-TOF mass spectrum of sodiated DAG fragments (m/z 530 – 730) from Eastern red bat (L. borealis) wing tissue. Peaks identified at m/z 643.5 (OO) and m/z 615.5 (LP). Click here to view larger figure.
This paper presents a simple and robust method for separating broad lipid classes isolated from mammalian integument by preparative TLC and determining TAG profiles by MALDI-TOF MS, without time-consuming derivatization of the lipid molecules. The critical steps in producing quality spectra of TAGs with MALDI-TOF MS include: 1) Successful extraction of the compound with minimal contamination or oxidation; 2) Sufficient separation and isolation by chromatography; and 3) High resolution and mass accuracy by MALDI-TOF MS.
This paper demonstrates the method by extracting and separating the neutral lipid fraction from the plagiopatagium of the Eastern red bat to obtain TAG MS profiles. While the present study used a bat species (Mammalia: Chiroptera) these methods can be extended to study integumentary lipids of any mammalian species. Bat integument is characterized by being predominantly cholesterol, with lower amounts of TAGs, FFAs, squalene, and sterol/wax esters. Sebum lipid ratios in bats differ from humans in that squalene is present in low amounts (as opposed to up to 16% in humans), whilst cholesterol occurs in larger ratios (1 – 7% in humans but 26 – 62% in bats)22,31. Human hairs contain about 3% TAGs, while ratios up to 28% are found in Eastern red bat hair. The extraction of lipid samples from bats is similar for other species. While in this study cotton balls soaked in solvent are used to remove sebum, one can also invert a vial or sample tube containing solvent onto the surface of the integument multiple times. Specialized tape products also provide alternative means to extract surface lipids32. A critical part of a proper lipid extraction is to minimize contamination from skin oils. This is easily accomplished by keeping a squeeze bottle with methanol and spraying all glassware and utensils, wiping utensils with a tissue between all samples and wearing examination gloves. Oxidation of polyunsaturated acyls is prevented through the addition of BHT, and it should be used regardless of the temperature samples are stored at.
Biomolecule analysis usually requires a chromatographic step to separate molecules of interest from contaminants. TLC is used in this method, which avoids instrumentation requirements for gas or liquid chromatography and requires less technical experience to achieve robust and repeatable results. Depending on the lipid class of interest, many different mobile phases can be incorporated. Furthermore, the use of HPTLC plates and scanning densitometry can be used to achieve quantitative results. While the variations of TLC methods are too numerous to list here, some common mobile phases used in lipid TLC include chloroform:methanol:water for separation of phospholipids and glycolipids or isooctane:ethyl ether for separation of non-polar lipids28. In terms of separating TAGs from other lipid classes, the H:E:A solvent system works consistently and provides comparable results.
Another advantage for using TLC is that bands of interest can be rapidly profiled using MALDI-TOF MS without prior derivatization of the analytes. In this study the silica is removed from the TLC plate, and the analyte is eluted from it by sonication in a solvent and subsequent centrifugation to separate the adsorbent and evaporation of the eluting solvent. Alternatively, matrix may be applied directly onto analyte bands separated on TLC plates and then directly analyzed by MALDI-TOF MS33. Successful profiling by MALDI-TOF MS does rely on sufficient sample preparation and the operator's proficiency with tuning and calibrating the instrument. The instrument should be calibrated daily with standards covering molecular weight range appropriate for the molecules of interest. The suitable sensitivity and resolution (e.g. ≥10,000) of the equipment should also be confirmed daily with ACTH.
The sebaceous lipid constituents found on the surface of mammalian integument may play a role in colonization by bacterial/fungal pathogens. Therefore knowledge of the chemical composition among species and individuals may provide clues about processes of human and wildlife diseases. Intraspecific differences among diseased and healthy individuals may represent clinical signs that aid in disease detection and diagnosis. Furthermore, if specific compounds that inhibit microbial growth are present, these may be identified for use in disease treatment and prevention.
The authors have nothing to disclose.
Assistance was provided by Scott Treece, Katelyn Arter, Jeremy Ragsdell, Tony LaMark James, Amy Fischer, Hannah Blair, and Cheyenne Gerdes during the development of laboratory methods. We would like to thank the Medina-Bolivar Laboratory (Luis H. Nopo-Olazabal; Arkansas Biosciences Institute) for assistance with TLC scanning densitometry. MALDI-TOF MS used for this project was provided through the NSF EPSCoR, RII: Arkansas ASSET Initiative P3 Center (EPS-0701890) in the Arkansas Biosciences Institute. Funding was provided by a U.S. Fisheries and Wildlife Service/Arkansas State Wildlife Grant, the National Speleological Society, and The Center for North American Bat Research and Conservation at Indiana State University.
Name of the reagent | Company | Catalogue number | Comments (optional) |
Butylated Hydroxytoluene | MP Biomedicals, LLC | 101162 | www.mpbio.com |
TLC Flexible Plates | Whatman | 4410-222 | www.whatman.com |
ACTH | Sigma-Aldrich Chem. Co. | A8346-5X1VL | www.sigmaaldrich.com |
Triolein | Sigma-Aldrich Chem. Co. | 44895-U | |
TLC Lipid Standard | TLC 18-1 | www.nu-chekprep.com | |
MALDI TAG Standard | Nu-Check Prep., Inc. | NIH Code 53B | |
MALDI TAG Standard | Sigma-Aldrich Chem. Co. | 17810-1AMP-S | |
Glass Vials with Teflon Cap | U.S. National Scientific Co. | B7800-2 | www.nationalscientific.com/ |
DHB | Sigma-Aldrich Chem. Co. | 50862-1G-F | |
CHCA | Sigma-Aldrich Chem. Co. | C8982-10X10 mg | |
Sebutape | CuDerm | S100 |