In this paper, we describe an optimized procedure for extracting and analyzing prostaglandins and other eicosanoids from C. elegans using LC-MS/MS.
Caenorhabditis elegans is emerging as a powerful animal model to study the biology of lipids1-9. Prostaglandins are an important class of eicosanoids, which are lipid signals derived from polyunsaturated fatty acids (PUFAs)10-14. These signalling molecules are difficult to study because of their low abundance and reactive nature. The characteristic feature of prostaglandins is a cyclopentane ring structure located within the fatty acid backbone. In mammals, prostaglandins can be formed through cyclooxygenase enzyme-dependent and -independent pathways10,15. C. elegans synthesizes a wide array of prostaglandins independent of cyclooxygenases6,16,17. A large class of F-series prostaglandins has been identified, but the study of eicosanoids is at an early stage with ample room for new discoveries. Here we describe a procedure for extracting and analyzing prostaglandins and other eicosanoids. Charged lipids are extracted from mass worm cultures using a liquid-liquid extraction technique and analyzed by liquid chromatography coupled to electrospray ionization tandem mass spectrometry (LC-ESI-MS/MS). The inclusion of deuterated analogs of prostaglandins, such as PGF2 α-d4 as an internal standard is recommended for quantitative analysis. Multiple reaction monitoring or MRM can be used to quantify and compare specific prostaglandin types between wild-type and mutant animals. Collision-induced decomposition or MS/MS can be used to obtain information on important structural features. Liquid chromatography mass spectrometry (LC-MS) survey scans of a selected mass range, such as m/z 315-360 can be used to evaluate global changes in prostaglandin levels. We provide examples of all three analyses. These methods will provide researchers with a toolset for discovering novel eicosanoids and delineating their metabolic pathways.
Prostaglandins (PGs) are an important class of lipid hormones that have been extensively investigated and implicated in regulating reproduction, immunity, and development in a wide array of organisms12-14. PGs are ideally suited for comprehensive systems biology analyses because they comprise a series of lipids derived from a common precursor(s). The nematode C. elegans is one of the most widely used model organisms to address fundamental questions in genetics and systems biology.
We have demonstrated that C. elegans synthesizes F-series PGs that guide motile sperm to oocytes3,6,16. F-series PGs derived from 20-carbon PUFAs with three, four, and five double bonds, comprising the F1, F2, and F3 classes, respectively have been identified3,16. These PGs are synthesized independent of cyclooxygenase enzymes, yet PGF1α and PGF2α stereoisomers are still generated. For qualitative and quantitative analyses of C. elegans PGs, LC-MS/MS is a powerful and sensitive analytical technique. Before performing this analysis, it is important to develop an optimized extraction method because the performance of the analytical process heavily depends on the extract quality. Liquid chromatography and mass spectrometry can only provide anticipated mass to charge ratio (m/z), as well as desirable peak shape and retention time of the PG parent ion. Metabolic profiling of PGs in C. elegans is a challenging task requiring various MS acquisition strategies.
LC-MS full scan or survey scanning (Q1 scanning) has the advantage of ensuring that most ionizable PGs will generate a mass spectrometric response. While the survey scan provides useful information on total profiling of PGs with respect to wild-type and mutant C. elegans, detection of minor PGs is compromised due to low sensitivity. Nevertheless, LC-MS survey scanning can give a global view of PGs and is particularly useful for analyzing mutants predicted to affect metabolism of a large PG population.
In metabolite identification, LC-MS/MS analysis of chemically synthesized PG standards is first performed to obtain their product ion spectra as reference compounds. These spectra can be compared to the spectrum of an unknown metabolite. Multiple reaction monitoring (MRM) mode is used for enhanced sensitivity and specificity. An MRM experiment is accomplished by specifying the parent ion/product ion mass transition of a compound. By knowing the mass and structure of the target analytes, it is possible to predict theoretical MRM transitions for many unknown metabolites.
An optimized LC-MS/MS method for profiling isomeric PGs in C. elegans has not been reported. Here we describe an extraction and integrated mass spectrometry approach consisting of LC-MS and LC-MS/MS methods for detecting, quantifying, and investigating C. elegans PG metabolites. This approach can be applied to other eicosanoids.
The protocol as described below is divided into three sections: worm culture, prostaglandin extraction, and prostaglandin analysis. As noted, there are multiple points when samples can be temporarily stored at -80 °C or -20 °C.
1. Worm Culture
We recommend approximately 6 g of mixed stage worms for comprehensive LC-MS/MS. This should provide enough material for detection at least six separate injections. For quantification of known PGs by MRM in a single injection or two, 1-2 g are sufficient. Analysis of extracts from synchronized cultures consisting of a specific stage is also possible. Up to 4 different strains can be grown simultaneously. For example, a wild type control and three different mutant strains.
2. Prostaglandin Extraction
The reagents needed for extraction are shown below. The method is modified from that of Golovko and Murphy17 and includes acetone extraction followed by liquid-liquid purification, which enhances LC-MS/MS sensitivity. A Bullet Blender 5 homogenizer is used in the procedure, although similar results can be obtained with a Dounce homogenizer. Butylated hydroxytoluene (BHT) and evaporation under Nitrogen (N2) gas are used to prevent oxidation. All glassware should be siliconized (Sigmacote) to reduce lipid binding. Extraction with organic solvents should be performed in a chemical hood.
3. Prostaglandin Analysis
Sample preparation was carried out by liquid-liquid extraction adapted from Golovko and Murphy17. It provided excellent recovery of the internal standard (PGF2α-d4). The general scheme for PG extraction from C. elegans is shown in Figure 1. Chromatographic conditions were optimized to provide baseline separation of >30 eicosanoid standards (Table 1 shows 13 standards). A Hydro-Rp column (250 x 2.0 mm i.d) with water and acetonitrile containing 0.1% formic acid provided the best separation and sensitivity. Survey scans of wild-type and fat-3 mutant extracts shown in Figure 2 document global levels of ions within the mass range of 315-360 atomic mass units. fat-3(wa22) mutants lack most 20-carbon PUFAs. An F3 class PG is highlighted. In Figure 3, MRM analyses of a wild-type extract show multiple PG isomers of the F1 (Figure 3A), F2 (Figure 3B), and F3 (Figures 3C and 3D) classes. The F3 class can be detected with either of two mass transitions, m/z 351/193 or m/z 351/191. CePGF2 is predominantly comprised of the PGF2αenantiomer. CePGF1 is likely to be PGF1α or its enantiomer. Figure 4 shows the collision-induced decomposition of CePGF2 (RT=11.8) compared to the PGF2α standard (RT=11.8). Minor differences in product ions are likely due to low CePGF2 abundance and co-eluting compounds in the extract.
Figure 1. Schematic diagram of C. elegans PGs extraction and LC-MS analyses. Note that acetone/saline and chloroform both have 0.005% BHT to minimize lipid oxidation. Refer to the text for more details. Click here to view larger figure.
Figure 2. Survey scans of m/z 315-360 of wild-type and fat-3(wa22) mutant extracts. Liquid chromatography retention time (RT) is shown in panel [A]. Extracted ions at RT = 11.3 are shown for wild-type [B] and fat-3(wa22) [C] extracts. An F3 class PG with mass m/z 351 is highlighted. Cps, counts/sec; a.m.u., atomic mass unit.
Figure 3. MRM analyses of wild-type extracts. F1 class PGs are detected with mass transition m/z 355/311 [A]. Notice that several hydrophobic compounds (RT > 14 min), which are unlikely to be PGs, are also detected with this transition. F2 class PGs are detected with mass transition m/z 353/193 [B]. F3 class PGs are detected with either mass transition m/z 351/193 [C] or m/z 351/191 [D]. Notice that the extracts contain multiple PG isomers of each class. Numbers correspond to PGs shown in Table 2. The concentration of CePGF2 is 1.8 ng/ml. RT, retention time; cps, counts/sec.
Figure 4. Collision-induced decomposition of chemically synthesized PGF2α and CePGF2. Arrows in panel [A] indicate product or fragmentation ions shared between PGF2α and CePGF2 (RT=11.8). The product ions at m/z 309 and m/z 193 are generated from indicated cleavage sites (highlighted a and b), correspond to the structures shown, and are characteristic of F-series PGs [B]. Cps, counts/sec. Click here to view larger figure.
Standard | RT (min) | [M-H]- m/z | Key product ions in MS/MS |
20-hydroxy PGE2 | 9.43 | 367 | 349, 331, 287, 234, 189, 129, 109 |
PGF3- | 11.26 | 351 | 333, 307, 289, 271, 245, 219, 209, 193, 191, 171, 165, 111 |
Thromboxane B2 | 11.66 | 369 | 289, 191, 177, 169, 151 |
PGF2- | 11.80 | 353 | 335, 309, 291, 273, 263, 247, 235, 209, 193, 171, 165, 111 |
PGF1- | 11.79 | 355 | 337, 319,311, 301, 293, 275, 265, 237, 211, 195 |
Lipoxin B4 | 12.38 | 351 | 201, 191,189, 165, 155, 115, 107, 71, 59 |
PGD2 | 12.56 | 351 | 315, 271,203, 189 |
5(S), 6(R)- Lipoxin A4 | 12.83 | 351 | 235, 217, 189, 144, 135, 115, 99, 59 |
PGA2 | 14.02 | 333 | 315, 297, 271, 235, 191, 189, 175, 163, 137, 113, 109 |
Δ12-PGJ2 | 14.20 | 333 | 271, 189, 123 |
Leukotriene B4 | 14.73 | 335 | 181, 109, 93, 71, 69, 59, 57 |
15d-Δ12,14-PGJ2 | 16.80 | 315 | 297, 271, 217, 203, 158 |
5(S)-HpETE | 17.88 | 335 | 97, 83, 81, 57 |
Table 1. Retention times and key product ions of 13 eicosanoid standards from the LC-MS/MS method3 . Over 30 standards were used to develop the LC-MS/MS program. The chromatographic retention times (RTs) differ, even among very similar PGs. An exception is PGF1α and PGF2α. Nevertheless, these PGs are distinguished by their parent ion masses ([M-H]- m/z) and collision-induced decomposition spectra (MS/MS).
Prostaglandin class | No. in Figure 3 | [M-H]- m/z | Key product ions in MS/MS |
F1 (CePGF1) | 1 | 355 | 319, 301, 311, 293, 275, 265, 237, 223, 211, 195, 157 |
F1 | 2 | 355 | 311, 301, 293, 275, 265, 211, 195, 167, 157 |
F2 (CePGF2) | 3 | 353 | 309, 291, 273, 263, 247, 209, 193, 171, 165, 127 |
F2 | 4 | 353 | 309, 291, 273, 263, 255, 247, 219, 209, 193, 171, 113 |
F3 | 5 | 351 | 315, 307, 289, 275, 249, 205, 193, 191, 167, 153, 139 |
F3 | 6 | 351 | 333, 289, 271, 261, 245, 223, 193, 191, 163 |
Table 2. Collision-induced decomposition product ions for several major C. elegans F1, F2, and F3 PGs shown in Figure 3. MS/MS of other less abundant isomers are not shown. These data are from multiple analyses and not all product ions may be visible in a given run. Given the complexity of the extracts, some less abundant product ions may derive from another parent ion with similar retention time or result from interference. Peak 2 is likely a stereoisomer of CePGF1 and peak 4 is likely a stereoisomer of CePGF2. See Edmonds, et al. (2010) for additional data3.
We describe a procedure for eicosanoid extraction and analysis, focusing on F-series PGs. There are several parts of the procedure that can be problematic. First, it is critical that the worm cultures do not starve, as starvation can alter PG metabolism. For supplemental feeding, NA22 bacteria are recommended instead of the more commonly used OP50 bacteria because NA22 reaches higher density. However, the NA22 strain lacks antibiotic resistance and is more susceptible to contamination. Second, worms synthesize individual PG isomers in low abundance relative to mammalian tissues. This may be due in part to redundancy among the numerous isomers. We recommend about 6 g of tissue for comprehensive analysis and stronger signals. Less tissue (1-2 g) can be used if the dried extract is resuspended in less methanol:water solution to increase PG concentration. However, only one to two injections can be performed. The detection limit of our LC-MS/MS system is about 10 pg PGF2α /ml. One ml of densely packed mixed stage worms (about 1 g) yields roughly 25-50 pg of CePGF2. More sensitive mass spectrometry systems can reduce the amount of worm tissue required for analysis. Third, differences in PG extraction efficiency among samples can cause variable results. We have found that extraction efficiency is very similar when tissues are extracted in parallel. To determine the efficiency, add 1.0 ng of PGF2α-d4 at the homogenization step as an internal control. MRM using mass transition m/z 357/197 is used to measure PGF2α-d4 concentration relative to a 1 ng/ml standard solution. The amount of PGF2α-d4 lost during extraction is then calculated.
The chromatography parameters and mass transitions we include can be altered to detect other PGs and eicosanoids. Despite considerable effort, we have not been able to identify D-series or E-series PGs in the extracts17. Furthermore, we have not detected 8-iso PGF2α and 8-iso PGE2 that are characteristic of free radical-initiated peroxidation, which generates a nonselective mixture of PG stereoisomers19. Whether worms synthesize other PG types is not known. Endocannabinoids and various epoxy and hydroxy metabolites of arachidonic and eicosapentaenoic acids have been found in C. elegans extracts5,7,20,21. We recommend the use of both MRM and MS/MS compared to authentic standards for quantification and identification, respectively. For novel eicosanoids, these analyses should be combined with a comparative study of fat mutants, which are deficient in PUFA synthesizing enzymes22, as well as a functional assay, if possible. A caveat to analyzing fat mutants is that minute quantities of PUFAs present in worms are sufficient for PG synthesis. For example, fat-2(wa17) mutants have a small amount of D12 desaturase activity (~5% of wild type22) and these mutants still produce PGs6. fat-3(wa22) and fat-4(wa14) mutants fail to synthesize PGs derived from arachidonic and eicosapentaenoic acids16. We also have found that fat mutants compensate for the loss of PUFA classes by up-regulating PG synthesis from remaining classes. For example, fat-3(wa22) mutants fail to synthesize most PGs derived from 20-carbon PUFAs. Instead, they appear to up-regulate novel PGs derived from 18-carbon PUFAs16. To date, we have not identified a C. elegans strain that is completely deficient in PG synthesis. It is possible that PGs are essential for growth or development.
The authors have nothing to disclose.
We thank the UAB Targeted Metabolomics and Proteomics Laboratory, which has been supported in part by the UAB Skin Disease Research Center (P30 AR050948 to C. Elmets), the UAB-UCSD O’Brien Acute Kidney Injury Center (P30 DK079337 to A. Agarwal) and the UAB Lung Health Center (R01 HL114439, R01 HL110950 to J.E. Blalock). Support for the mass spectrometer was from a NCRR Shared Instrumentation grant (S10 RR19261 to S. Barnes). We also thank Ray Moore for technical support. C. elegans strains were provided by the Caenorhabditis Genetics Center, which is funded by the NIH. This work was supported by the NIH (R01GM085105 to MAM, including an ARRA administrative supplement).
REAGENTS | |||||||||||||||||
X-large (16 cm) plates | Fisher Scientific | 0875714 | |||||||||||||||
E. coli strain NA22 | Caenorhabditis Genetics Center (CGC) | NA22 | http://www.cgc.cbs.umn.edu | ||||||||||||||
Acetone, 399.5% | Fisher Scientific | A928-4 | |||||||||||||||
Butylated Hydroxytoluene | MP Biomedicals | 101162 | |||||||||||||||
Hexane, HPLC grade | Fisher Scientific | H302-1 | |||||||||||||||
Formic acid, 399% | Acros | AC27048-0010 | Available through Fisher Scientific | ||||||||||||||
Chloroform, HPLC grade | Acros | AC26832-0010 | Available through Fisher Scientific | ||||||||||||||
PGF2α-d4 | Cayman Chemicals | 316010 | Cayman has a wide array of standards available for purchase | ||||||||||||||
Sterile screw cap self-standing 5 ml tube | Fisher Scientific | 14-222-651 | For use with Bullet Blender | ||||||||||||||
0.5 mm zirconium oxide beads | Next >>> Advance | ZrOB05 | |||||||||||||||
10 ml glass conical heavy-duty graduated centrifuge tubes | Kimble Kimax | 45200-10 | Available through Fisher Scientific | ||||||||||||||
15 ml glass conical tubes | Corning Pyrex | 8082-15 | Available through Fisher Scientific | ||||||||||||||
Sigmacote (Siliconizing reagent) | Sigma-Aldrich | SL2-100ML | |||||||||||||||
Teflon lined capped 1/2 Dram glass vial | Fisher Scientific | V1235C-TFE | |||||||||||||||
EQUIPMENT | |||||||||||||||||
CentraSL2 Clinical Centrifuge | Thomas Scientific | 2517N92-TS | |||||||||||||||
Bullet Blender 5 blue homogenizer | Next >>> Advance | BBY5MB | A 40 ml Dounce homogenizer can be used as an alternative | ||||||||||||||
Synergi 4 μm Hydro-RP 80 Å LC Column 250 x 2.0 mm | Phenomenenex | 00G-4375-B0 | HPLC Column | ||||||||||||||
SecurityGuard Cartridges AQ C18 4 x 2.0 mm | Phenomenenex | AJ0-7510 | |||||||||||||||
SecurityGuard Guard Cartridges Kit | Phenomenenex | KJ0-4282 | |||||||||||||||
Shimadzu Prominence HPLC with refrigerated auto sampler | Shimadzu Scientific Instruments, Inc. | Any standard HPLC system coupled to a triple quadrupole mass spectrometer should be sufficient | |||||||||||||||
API 4000 triple quadrupole mass spectrometer | Applied Biosystems/MDS SCIEX | ||||||||||||||||
|