Summary

Multi-unidade Métodos de gravação para caracterizar a atividade neural no Locust (<em> Schistocerca Americana</em>) Circuitos olfatórias

Published: January 25, 2013
doi:

Summary

Nós demonstramos as variações da técnica de gravação extracelular de multi-unidade para caracterizar odor evocadas respostas nas três primeiras etapas da via olfactiva invertebrado. Estas técnicas podem ser facilmente adaptados para examinar a actividade conjunto de outros sistemas neurais também.

Abstract

Detecção e interpretação de sinais olfativos são críticos para a sobrevivência de muitos organismos. Notavelmente, espécies em filos têm notavelmente semelhantes sistemas olfativos sugerindo que a abordagem biológica para sensoriamento químico foi otimizado ao longo do tempo evolutivo 1. No sistema de insecto olfactivo, odorantes são transduzidas por neurónios receptores olfactivos (ORN) na antena, que convertem a estímulos químicos em trens de potenciais de acção. Entrada sensorial dos ORNs é então enviada para o lobo antenal (AL; uma estrutura análoga ao bulbo olfativo de vertebrados). Na AL, representações neurais para odores assumir a forma de espaço-temporais padrões de disparo distribuídos em conjuntos de neurônios principais (PNs, também referido como neurônios de projeção) 2,3. A saída AL é posteriormente processado por células de Kenyon (KCS) no corpo de cogumelo a jusante (MB), uma estrutura associada com a memória e aprendizagem olfactiva 4,5. Suae, apresentamos as técnicas de gravação eletrofisiológicos para monitorar odor evocadas respostas neurais nesses circuitos olfativos.

Em primeiro lugar, apresenta-se um método de gravação única sensillum para estudar as respostas evocadas de odor ao nível das populações de ORNs 6,7. Discute-se o uso de soro fisiológico cheios pipetas de vidro afiados como eletrodos para monitorar as respostas extracelularmente ORN. A seguir, apresentamos um método para monitorar as respostas extracelularmente PN usando um eletrodo de 16 canais comerciais 3. Uma abordagem semelhante, usando uma custom-made tetrode fio de 8 canais torcida é demonstrado para Kenyon célula gravações 8. Nós fornecemos detalhes de nossa montagem experimental e traços representativos presentes de gravação para cada uma destas técnicas.

Protocol

1. Preparação odor e Entrega Soluções diluídas de odor em óleo mineral, em volume, para atingir o nível desejado de concentração. Armazenar uma mistura de 20 ml de óleo mineral e o odorante num frasco de vidro de 60 ml. Insira duas agulhas de seringa em um tampão de borracha (calibre 19), um a partir da parte inferior e o outro a partir do topo, para proporcionar uma entrada e uma linha de saída. Selar a garrafa de vidro com rolha de borracha e deste anexar um personalizada filtro de carvão activ…

Representative Results

Respostas evocadas de odor de um único ORN para dois álcoois diferentes são apresentados na Figura 3D. Dependendo do local de gravação (sensilas tipo, a colocação do eléctrodo) com várias unidades gravações podem ser alcançados. Uma forma de onda em bruto extracelular de uma gravação AL é mostrado na Figura 6A. Os potenciais de acção ou picos de amplitudes diferentes provenientes de diferentes PNs pode ser observado neste rastreio de tensão…

Discussion

Estímulos sensoriais mais evocar respostas combinatórias que são distribuídos em conjuntos de neurônios. Por isso, a monitorização simultânea de múltiplos neurónios actividade é necessário compreender como estímulo específico informação é representada e processado por circuitos neuronais no cérebro. Aqui, nós demonstramos extracelulares técnicas de multi-unidade de gravação para caracterizar odor evocadas respostas para os três primeiros centros de processamento ao longo da via inseto olfativo. No…

Disclosures

The authors have nothing to disclose.

Acknowledgements

Os autores gostariam de agradecer o seguinte para financiar este trabalho: generoso arranque fundos do Departamento de Engenharia Biomédica da Universidade de Washington, um McDonnell Centro para Sistemas de Neurociência concessão, um Office of Naval Research Grant (Grant #: N000141210089) para BR

Materials

Name Company Catalog Number Comments
      Electrophysiology Equipment
A.C. amplifier GRASS Model P55 for single sensillum recordings
Audio monitor (model 3300) A-M Systems 940000  
Custom-made 16 channel pre-amplifier and amplifier Cal. Tech. Biology Electronics Shop   for AL and MB recordings
Data acquisition unit National Instruments BNC-2090  
Fiber optic light WPI SI-72-8  
Light source 115 V WPI NOVA  
Manual micromanipulator WPI M3301R for locust brain recordings
Stereomicroscope1 on boom stand Leica M80 for locust brain recordings
Stereomicroscope2 Leica M205C for single sensillum recordings
Vibration-isolation table TMC 63-500 series  
Motorized micromanipulator Sutter Instruments MP285/T  
Oscilloscope Tektronix TD2014B  
      Electrodes/Construction Tools
16-channel electrode NeuroNexus A2x2-tet-3mm-150-121 for antennal lobe recordings
Borosilicate capillary tubes with filament, ID 0.69 mm Sutter Instruments BF120-69-10 for making glass electrodes
Micropipette puller Sutter Instruments P-1000  
Function generator Multimeter Warehouse SG1639A for gold-plating electrodes
Gold plating solution (non cyanide) SIFCO Industries NC SPS 5355  
Impedance tester BAK Electronics Inc. IMP-2 for gold-plating electrodes
Switch rotary Electroswitch C7D0123N for gold-plating electrodes
Pulse isolator WPI A365 for gold-plating electrodes
Q series electrode holder Warner Instruments 64-1091  
Silver wire 0.010″ diameter A-M Systems 782500 ground electrode
8 pin DIP IC socket Digikey ED90032-ND  
Borosilicate capillary tubes with filament, ID 0.58 mm Warner Instruments 64-0787 twisted wire tetrode construction
Heat gun Weller 6966C  
Rediohm-800 wire Kanthal Precision Technologies PF002005  
Titer plate shaker Thermo Scientific 4625Q twisting wires
Carbide scissors, 4.5″ Biomedical Research Instr 25-1000 for cutting twisted tetrode wires
Fine point tweezers HECO 91-EF5-SA for teasing tetrode wires apart
      Odor Delivery
6 ml syringe Kendall 1180600777 for custom designed activated carbon filter
Brown odor bottles Fisher 08-912-165  
Charcoal BuyActivatedCharcoal.com GAC-48C  
Desiccant Drierite 23005  
Drierite gas drying jar Fischer Scientific 09-204  
Heat shrink tubing 3M EPS-200 odor filter preparation
Hypodermic needle aluminum hub, gauge 19 Kendall 8881-200136 for providing inlet and outlet lines for odor bottles
Mineral oil Mallinckrodt Chemicals 6357-04 for odor dilution
Nalgene plastic tubing, 890 FEP Thermo Scientific 8050-0310 for carrier gas delivery
Pneumatic picopump WPI sys-pv820 for odor delivery
Polyethylene tubing ID 0.86 mm Intramedic 427421 for odor bottle outlet connections and saline profusion tubing
Stoppers Lab Pure 97041 for sealing odor bottles
Time tape PDC T-534-RP  
Tubing luer Cole-Parmer 30600-66  
Vacuum tube McMaster-Carr 5488K66  
      Preparation/Dissection
100 x 15 mm petri dish VWR International 89000-304  
18 AWG copper stranded wire Lapp Kabel 4510013 wire insulation is used as rubber gaskets
22 AWG stranded hookup wire AlphaWire 1551 brain platform
Batik wax Jacquard 7946000  
Dental periphery Wax Henry-Schein Dental 6652151  
Electrowaxer Almore International 66000  
Epoxy, 5 min Permatex 84101  
Hypodermic needle aluminum hub Kendall 8881-200136  
Protease from Streptomyces griseus Sigma-Aldrich P5147 for desheathing locust brain
Suture thread non-sterile Fisher NC9087024 for tying the abdomen after gut removal
Vetbond 3M 1469SB for sealing amputation sites
Dumont #1 forceps (coarse) WPI 500335  
Dumont #5 titanium forceps (fine) WPI 14096  
Dumont #5SF forceps (super-fine) WPI 500085 desheathing locust brain
10 cm dissecting scissors WPI 14393 for removing legs and wings
Vannas scissors (fine) WPI 500086 for removing cuticle, cutting the foregut
      Saline Profusion
Extension set with rate flow regulator Moore Medical 69136 for regulating saline flow
IV administration set with Y injection site Moore Medical 73190 for regulating saline flow

References

  1. Ache, B. W., Young, J. M. Olfaction: diverse species, conserved principles. Neuron. 48, 417-430 (2005).
  2. Laurent, G., Wehr, M., Davidowitz, H. Temporal representations of odors in an olfactory network. Journal of Neuroscience. 16, 3837-3847 (1996).
  3. Stopfer, M., Jayaraman, V., Laurent, G. Odor identity vs. intensity coding in an olfactory system. Neuron. 39, 991-1004 (2003).
  4. Steven de Belle, J., Heisenberg, M. Associative odor learning in Drosophila abolished by chemical ablation of mushroom bodies. Science. 263, 692-695 (1994).
  5. Cassenaer, S., Laurent, G. Conditional modulation of spike-timing-dependent plasticity for olfactory learning. Nature. 482, 47-52 (2012).
  6. Hallem, E. A., Carlson, J. R. Coding of odors by a receptor repertoire. Cell. 125, 143-160 (2006).
  7. Raman, B., Joseph, J., Tang, J., Stopfer, M. Temporally diverse firing patterns in olfactory receptor neurons underlie spatiotemporal neural codes for odors. Journal of Neuroscience. 30, 1994-2006 (2010).
  8. Perez-Orive, J., et al. Oscillations and sparsening of odor representations in the mushroom body. Science. 297, 359-365 (2002).
  9. Naraghi, M., Laurent, G. Odorant-induced oscillations in the mushroom bodies of the locust. The Journal of Neuroscience. 14, 2993-3004 (1994).
  10. Ochieng, S. A., Hallberg, E., Hansson, B. S. Fine structure and distribution of antennal sensilla of the desert locust, Schistocerca gregaria (Orthoptera: Acrididae). Cell and Tissue Research. 291, 525-536 (1998).
  11. Burrows, M., Laurent, G. Synaptic Potentials in the Central Terminals of Locust Proprioceptive Afferents Generated by Other Afferents from the Same Sense Organ. Journal of Neuroscience. 13, 808-819 (1993).
  12. Pouzat, C., Mazor, O., Laurent, G. Using noise signature to optimize spike-sorting and to assess neuronal classification quality. Journal of Neuroscience Methods. 122, 43-57 (2002).
  13. Mazor, O., Laurent, G. Transient dynamics versus fixed points in odor representations by locust antennal lobe projection neurons. Neuron. 48, 661-673 (2005).
  14. Christensen, T. A., Pawlowski, V. A., Lei, H., Hildebrand, J. G. Multi-unit recordings reveal context dependent modulation of synchrony in odor-specific neural ensembles. Nature Neuroscience. 3, 927-931 (2000).
  15. Pellegrino, M., Nakagawa, T., Vosshall, L. B. Single Sensillum Recordings in the Insects Drosophila melanogaster and Anopheles gambiae. J. Vis. Exp. (36), e1725 (2010).
  16. Geffen, M. N., Broome, B. M., Laurent, G., Meister, M. Neural Encoding of Rapidly Fluctuating Odors. Neuron. 61, 570-586 (2009).
  17. Ito, I., Ong, R. C., Raman, B., Stopfer, M. Sparse odor representation and olfactory learning. Nature Neuroscience. 11, 1177-1184 (2008).
  18. Laurent, G. Olfactory network dynamics and the coding of multidimensional signals. Nature Review Neuroscience. 3, 884-895 (2002).
  19. Brown, S. L., Joseph, J., Stopfer, M. Encoding a temporally structured stimulus with a temporally structured neural representation. Nature Neuroscience. 8, 1568-1576 (2005).
  20. MacLeod, K., Laurent, G. Distinct mechanism for synchronization and temporal patterning of odor-encoding neural assemblies. Science. 274, 976-979 (1996).
  21. Wehr, M., Laurent, G. Relationship between afferent and central temporal patterns in the locust olfactory system. The Journal of Neuroscience. 19, 381-390 (1999).
  22. Moreaux, L., Laurent, G. Estimating firing rates from calcium signals in locust projection neurons in vivo. Frontiers in Neural Circuits. 1, 1-13 (2007).
  23. Galizia, C. G., Joerges, J., Kuttner, A., Faber, T., Menzel, R. A semi-in-vivo preparation for optical recording of the insect brain. Journal of Neuroscience Methods. 76, 61-69 (1997).
  24. Galan, R. F., Sachse, S., Galizia, C. G., Hez, A. V. M. Odor-driven attractor dynamics in the antennal lobe allow for simple and rapid olfactory pattern classification. Neural Computation. 16, 999-1012 (2004).
  25. Kuebler, L. S., Schubert, M., Karpati, Z., Hansson, B. S., Olsson, S. B. Antennal Lobe Processing Correlates to Moth Olfactory Behavior. Journal of Neuroscience. 32, 5772-5782 (2012).
  26. Silbering, A. F., Bell, R., Galizia, C. G., Benton, R. Calcium Imaging of Odor-evoked Responses in the Drosophila Antennal Lobe. J. Vis. Exp. (61), e2976 (2012).
  27. Skiri, H. T., Galizia, C. G., Mustaparta, H. Representation of Primary Plant Odorants in the Antennal Lobe of the Moth Heliothis virescens Using Calcium Imaging. Chemical Senses. 29, 253-267 (2004).

Play Video

Cite This Article
Saha, D., Leong, K., Katta, N., Raman, B. Multi-unit Recording Methods to Characterize Neural Activity in the Locust (Schistocerca Americana) Olfactory Circuits. J. Vis. Exp. (71), e50139, doi:10.3791/50139 (2013).

View Video