Xenopus laevis provides an ideal model system for studying cell fate specification and physiological function of individual retinal cells in primary cell culture. Here we present a technique for dissecting retinal tissues and generating primary cell cultures that are imaged for calcium activity and analyzed by in situ hybridization.
The process by which the anterior region of the neural plate gives rise to the vertebrate retina continues to be a major focus of both clinical and basic research. In addition to the obvious medical relevance for understanding and treating retinal disease, the development of the vertebrate retina continues to serve as an important and elegant model system for understanding neuronal cell type determination and differentiation1-16. The neural retina consists of six discrete cell types (ganglion, amacrine, horizontal, photoreceptors, bipolar cells, and Müller glial cells) arranged in stereotypical layers, a pattern that is largely conserved among all vertebrates 12,14-18.
While studying the retina in the intact developing embryo is clearly required for understanding how this complex organ develops from a protrusion of the forebrain into a layered structure, there are many questions that benefit from employing approaches using primary cell culture of presumptive retinal cells 7,19-23. For example, analyzing cells from tissues removed and dissociated at different stages allows one to discern the state of specification of individual cells at different developmental stages, that is, the fate of the cells in the absence of interactions with neighboring tissues 8,19-22,24-33. Primary cell culture also allows the investigator to treat the culture with specific reagents and analyze the results on a single cell level 5,8,21,24,27-30,33-39. Xenopus laevis, a classic model system for the study of early neural development 19,27,29,31-32,40-42, serves as a particularly suitable system for retinal primary cell culture 10,38,43-45.
Presumptive retinal tissue is accessible from the earliest stages of development, immediately following neural induction 25,38,43. In addition, given that each cell in the embryo contains a supply of yolk, retinal cells can be cultured in a very simple defined media consisting of a buffered salt solution, thus removing the confounding effects of incubation or other sera-based products 10,24,44-45.
However, the isolation of the retinal tissue from surrounding tissues and the subsequent processing is challenging. Here, we present a method for the dissection and dissociation of retinal cells in Xenopus laevis that will be used to prepare primary cell cultures that will, in turn, be analyzed for calcium activity and gene expression at the resolution of single cells. While the topic presented in this paper is the analysis of spontaneous calcium transients, the technique is broadly applicable to a wide array of research questions and approaches (Figure 1).
All experiments are performed following protocols approved by the Institutional Animal Care and Use Committee at the College of William and Mary. Developmental stages referenced in this protocol are according to Nieuwkoop and Faber 46.
1. Dissection
For embryos stage 25 or younger:
For embryos older than stage 25:
2. Dissociation of Tissue and Plating of Cells
Important Note – When transferring tissues, do not allow the retina or optic vesicle to touch any air-liquid boundaries; if this occurs the cells will lyse.
Note: If multiple images of the cells are to be taken throughout the experiment, attach a grid (Cellattice) to the underside of the Culture Plate with a small drop of superglue. This will allow images of identical cells in identical orientations to be taken at different points in the procedure.
Important Note: Most of our experiments are fixed within 6 hr of plating the cells. The longevity of the cells in culture is dependent upon the stage at which the tissue was dissected and the amount of yolk still present in the cells; cells dissected from younger (neurula stages) remain healthy in culture for 5-6 days while cells acquired from older embryos (swimming tadpole stages) will remain viable in culture for 2-3 days.
3. Calcium Imaging 47-49
This protocol utilizes calcium-sensitive Fluo4-AM and confocal microscopy to quantify calcium transients in individual cells. All steps using Fluo4-AM should be performed away from light, as Fluo4-AM is light sensitive. All washes should be added or removed using a p1000 micropipette and aerosol-resistant tips. Pipetting should be done slowly and towards the edge of the plate to avoid disturbing the cells. Media is not changed because the cultures are generally fixed within 6 hr of being dissected. For longer-term cultures, the media should be changed daily.
These parameters will result in a set of 900 still frame images for each time frame. Calcium activity can then be recorded by analyzing fluorescence levels over the time course images (Figure 3B) with the use of an image processing application such as ImageJ 50.
4. Fixing Cells
Note: Methanol can also be used for these washes and for storage.
5. Fluorescent in situ Hybridization (FISH)
Cultures can be assayed using the standard FISH protocol for Xenopus as described 51 with modifications for cell culture as outlined by the Anderson Lab 52. Modifications to the Anderson Lab protocol are listed below. All washes are conducted on the 35 mm Nunclon plates in volumes of approximately 1 ml, unless otherwise noted. Solutions are as defined in Sive et al. 53 unless otherwise noted.
Important Note: Do not use fluorescein-labeled RNA probes when performing in situ hybridization on cells imaged for calcium activity. Anti-fluorescein antibodies will bind to residual Fluo4-AM in the cells and may cause positive signal in all cells in the culture.
Day 1: Permeabilization and Hybridization
Day 2: Removal of Unbound Probe and Antibody Incubation
Day 3: Removal of Unbound Antibody and Fluorescence Development
6. Image FISH Results and Co-register with Calcium Imaging Data
Examples of successfully dissected optic vesicles (stage 25) and retinae (stage 35) are shown in Figures 2E and 2J. While this protocol can be used at various stages of development, it is critical to obtain only retinal tissue to ensure accuracy for further experiments. Carefully remove the epidermis at all stages and ensure that your forceps do not puncture the retinal tissue. In stage 35 or older, the lens can be seen as a clear layer on top of the retina and can be removed by cautious scraping using forceps.
A successfully plated primary cell culture is shown in Figure 3A. When dissociating tissue, it is important not to leave the retinal explant in the rinse solution for longer than the recommended 30 sec incubation time to prevent the tissue from dissociating in the rinse solution. Additionally, ensure that the tissue is permitted to dissociate in the trypsin solution for a full hour (older embryonic and larval stages may require even longer) to allow an even distribution of cells in the culture plate. Once the cells are plated, exercise caution when moving the plate and changing solutions to avoid washing the cells from the plate.
Figures 3B and 3C demonstrate images from calcium activity scanning and fluorescent in situ hybridization experiments (FISH), respectively. Cells that appear bright green in the calcium image are cells that are undergoing a transient spike in intracellular calcium levels as a result of the release of internal calcium stores. Cells can then be assayed for gene expression using FISH, and gene expression patterns can be correlated to patterns of calcium spiking activity by overlaying the images (Figure 3D). Using a combination of Python and MATLAB scripts (freely available upon request), data is obtained by analyzing the fluorescence activity of each individual region of interest (ROI) through the course of the imaging. An example of the calcium activity for an individual cell (ROI) over 1 hr of imaging is shown in Figure 4; a spike is visible at approximately 57 min of imaging. In Table 1, representative data for the percentage of cells positive for various probes are shown; while there are no data specific to this experiment reported in the literature (the point of our current experiments is to determine these percentages), our findings are consistent with data from similar types of experiments relating to calcium activity in the spinal cord17,55,56.
Parameters utilized for analysis include the number, frequency, and amplitude of spikes. Figure 5 provides representative results of calcium imaging and FISH experiments in embryonic retinal cells using probes for xVglut1, Ptf1a, and xGAD67. Using MATLAB scripts, the number of spikes for each ROI is determined and the number of spikes is averaged for all ROIs in the experiment. The average number of spikes from each experiment can then be compiled with other experiments, resulting in the average for a group of experiments. Cumulative distribution plots can be created to display the distribution of the average number of spikes for all experiments within a group. MATLAB scripts are then used for statistical analysis of the data.
Figure 5 shows representative data following MATLAB analysis. Briefly, our results show that calcium activity is developmentally regulated, with spiking peaking at stage 35 (p < 0.002) (Figures 5A and 5C). In terms of correlating calcium activity with cells positive for a specific probe, while there were no statistically significant differences, however there was a trend (p=0.08) for cells positive for xGAD67 (a marker for differentiated GABAergic cells) to display higher levels of calcium spiking activity than cells positive for a glutamatergic marker or for Ptf1a, a gene encoding a transcription factor gene correlated with promoting the GABAeric phenotype. Although preliminary, these data suggest that there may be GABAergic cells, which develop in a manner independent of Ptf1a or that activity-dependent neurotransmitter specification is not acting at the level of Ptf1a.
Figure 1. Procedural schematic. Once retinal tissue is dissected and dissociated, primary cell culture can be used for a wide variety of applications.
Figure 2. Dissection photographs. Embryos were stained in Nile Blue Sulfate for increased contrast. A-E: Stage 24. F-J: Stage 35. Abbreviations: ov, optic vesicle; fb, forebrain; sc, spinal cord; me, mesoderm; so, somites; le, lens; cg, cement gland; re, retina; ep, epithelium. Click here for larger figure.
Figure 3. Images of cell culture with ROIs circled. A. Bright field. B. Image following Fluo-4 (AM) treatment with ROIs circled. C. FISH image (arrows indicate examples of cells positive for the alpha subunit of the voltage gated calcium channel CaV2.1). D. Overlay of bright field, Fluo-4, and FISH images.
Figure 4. Example of calcium activity for a single cell (ROI). Plot of the fluorescence (in relative fluorescence units, rfu) vs. time (in minutes) from a Fluo4 calcium fluorescence image.
Figure 5. Results displaying calcium spiking by stage and probe. A. Average number of calcium spikes at stages 30 (n=4), 35 (n=8), and 38 (n=13). B. Average number of calcium spikes per culture among different probes used for in situ hybridization at stage 35 xVglut1 (n=3), xGAD67 (n=3), and Ptf1a (n=4). C. Cumulative distribution plot of the average number of spikes per culture at stages 30, 35, 38. D. Cumulative distribution plot of the average number of spikes per culture for cells identified as having positive signal for the in situ hybridization probes at stage 35; xVglut1, xGAD67, and Ptf1a. Click here for larger figure.
Probe | Stage | n (plates) | n (cells) | Percent Positive |
xGAD67 | 35 | 4 | 1042 | 2% |
38 | 4 | 690 | 2% | |
Ptf1a | 30 | 3 | 352 | 1% |
35 | 6 | 1856 | 1% | |
xVglut1 | 30 | 1 | 47 | 57% |
35 | 3 | 692 | 2% | |
38 | 3 | 364 | 4% | |
Table 1. Percent positive cells.
With its well-characterized cell types that are conserved across all vertebrates, the retina provides a useful model for studying the molecular-cellular processes governing cell type specification and differentiation. Primary cell culture affords a powerful method for investigating a wide range of processes including gene expression, protein dynamics, and calcium and electrical activity at the level of single cell resolution. Here we present a straightforward technique for primary cell culture from dissected presumptive retinal tissue in Xenopus laevis, a particularly amenable organism for such studies given that the presumptive retina is easily accessible from the very earliest stages of development and that primary cell culture can occur in a defined media consisting of a simple saline solution.
Although easily adaptable to most laboratory settings, there are several steps that require particularly close attention. Dissections should be performed with freshly sharpened forceps. Younger stages (< st. 30) benefit from treatment with Collagenase B mixed with the Cell Culture Medium. All steps involving the transfer of tissue or cells from one media to another must be performed with special care to prevent the tissue or cells from coming into proximity of the air-solution interface. The pipette containing the tissue should be fully submersed in plenty of fluid and the cells or tissue expelled very slowly. After the cells have been plated, all fluid transfers including, Fluo4-AM addition, and Cell Culture Medium, or fixation washes, must be carefully performed given that cells can be easily dislodged. As with all cell culture, sterility is concern, so care should be taken to sterilize all materials. Finally, letting the dissociated retinal explants sit for the designated timeframe in the dissociation medium is critical for successful cell attachment and to avoid clumping.
During the dissection and culture condition described in this protocol, both necrosis and apoptosis are extremely limited (less than 5-10% of the cells). Loss of cells on the plate (apoptosis) is rarely noticed during pre and post confocal imaging sessions. Handling cell cultures carefully is key to cell viability. Solution changes must be performed very slowly and steadily to preclude cell necrosis and apoptosis. While experiments to delineate the precise ratio of retinal cell types are currently ongoing, we do note that a variety of retinal cell types appear to be represented in the cultures and that Muller glial cells (which have a distinct morphology) are not dominant in the cultures.
A potential concern when analyzing plates after in situ hybridization experiments is that some of the cells may have moved, but this may be addressed with the use of cell tracking programs. Also, inherent in the technique of primary cell culture, a major limitation is the obvious loss of spatial patterning that is present in the intact tissue. The identity of individual cells must be established using molecular assays rather than by position in the tissue. However, this feature also provides the opportunity to analyze the state of specification of cells very precisely and in the absence of continuing cell-cell interactions. It also allows the investigator to selectively treat the cells with growth factors or other compounds and precisely analyze the effects without the influence of signals from neighboring cells. While we have employed this retinal dissection and primary cell culture technique for correlating calcium imaging with specific neurotransmitter phenotype markers, this technique is adaptable to a wide range of other downstream applications including electrophysiological recordings and single cell gene expression assays using RT-PCR or “next-gen” transcriptome analysis (Figure 1).
The authors have nothing to disclose.
We graciously thank Dr. John Hayes for scripts; Drs. Eric Bradley and Christopher Del Negro for assistance with confocal microscopy; Drew Hughes, Laura Odorizzi, Alex Garafalo, Rebecca Lowden, and Liz MacMurray for their work in developing the project and providing preliminary data; Dr. Greg Smith for helpful suggestions on statistical analysis. This work was supported by an NIH grant (NINDS IR15N5067566-01) to MSS and a Howard Hughes Medical Institute Science Education Grant to the College of William and Mary.
Name of the reagent | Company | Catalogue number | ||||||||||||||||||||||
For Dissections and Culturing | ||||||||||||||||||||||||
BD Falcon Easy Grip Tissue Culture Dishes, 35 mm | Fisher | 08-772A | ||||||||||||||||||||||
Disposable Polystyrene Petri Dishes, 60 x 15 mm | Fisher | 0875713A | ||||||||||||||||||||||
35 mm Nunclon Surface Petri Dishes (with Airvent) | Fisher | 12-565-91 | ||||||||||||||||||||||
Dumont Fine Forceps (Dumostar #55) | Fisher | NC9341917 | ||||||||||||||||||||||
Cellattice Micro-ruled plastic coverslip, 25 mm | Fisher | 50-313-17 | ||||||||||||||||||||||
Ethyl-m-Aminobenzoate Methanesulfonate Salt (MS-222) | MP Biomedicals, LLC | 103106 | ||||||||||||||||||||||
Gentamicin Sulfate | Enzo Life Sciences | 380-003-G025 | ||||||||||||||||||||||
Gibco Trypsin (1:250) Powder | Life Technologies | 27250-018 | ||||||||||||||||||||||
Collagenase B from Clostridium histolyticum | Roche | 11088831001 | ||||||||||||||||||||||
Penicillin-Streptomycin | Gibco | 15140-122 | ||||||||||||||||||||||
Nile Blue Sulfate (optional) | Pfaltz & Bauer | N05550 | ||||||||||||||||||||||
500 ml Vacuum Filter/Storage Bottle System, 0.22 μm Pore 33.2 cm2 CN Membrane | Corning | 430758 | ||||||||||||||||||||||
For Calcium Imaging | ||||||||||||||||||||||||
Fluo-4 AM 1 mM Solution in DMSO, Cell Permanent | Life Technologies | F-14217 | ||||||||||||||||||||||
Pluronic F-127 10% Solution in Water | Life Technologies | P-6866 | ||||||||||||||||||||||
LSM 510 Confocal Microscope System | Zeiss | Model Discontinued | ||||||||||||||||||||||
Blocking Reagent | Roche | 11096176001 | ||||||||||||||||||||||
For Fluorescent in situ hybridization (FISH) | ||||||||||||||||||||||||
Anti-Digoxigenin-POD, Fab Fragments | Roche | 11207733910 | ||||||||||||||||||||||
Anti-DNP-HRP Antibody | Perkin-Elmer | NEL747A | ||||||||||||||||||||||
Cy3 NHS ester | GE Healthcare | PA13101 | ||||||||||||||||||||||
NHS-Fluorescein | Thermo Scientific | 46409 | ||||||||||||||||||||||
Formamide, Deionized | Amresco | 0606-950ML | ||||||||||||||||||||||
Torula RNA, Type IX | Sigma-Aldrich | R3629 | ||||||||||||||||||||||
Heparin Sodium Salt, from Porcine Intestinal Mucosa | Sigma-Aldrich | H3393-250KU | ||||||||||||||||||||||
CHAPS | Sigma-Aldrich | C3023 | ||||||||||||||||||||||
Table 2. Specific reagents and equipment. |
||||||||||||||||||||||||
Solutions. *Gentamicin, an antibiotic, is used in our MMR solutions while penicillin and streptomycin are used in our culture media. |