Summary

为集中的的水性病毒和农业人畜共患病病原体的玻璃纤维过滤器

Published: March 03, 2012
doi:

Summary

玻璃棉过滤器已用于水性病毒集中了世界各地的研究小组。在这里,我们表明兴建玻璃棉过滤器的一个简单的方法,并展示过滤器也有效地集中水性的病毒,细菌和原生动物病原体。

Abstract

关键的第一步是在怀疑受污染的水的病原体水平评估中的浓度。浓度的方法往往是具体 ​​的特定病原体,例如,美国环境保护局方法1, 贾第鞭毛虫 1623,这意味着需要多种方法,抽样方案,如果针对多个病原体组。目前的方法的另一个缺点是可以是复杂和昂贵的设备,例如,集中病毒2 1MDS滤芯过滤器VIRADEL方法。在这篇文章中,我们描述了如何构建集中水源性病原体的玻璃纤维过滤器。经过过滤洗脱,浓缩是服从第二个浓度的步骤,如离心,文化或分子生物学方法的病原体检测和枚举。该过滤器有几个优点。建设是很简单的过滤器,可以建立一个NY大小为满足特定的取样要求。过滤器零件价格便宜,从而有可能严重影响项目预算的情况下收集大量的样品。大样本量(100到千件L)可以集中根据浊度堵塞率。高度便携和过滤器是用最少的设备,如泵和流量计,他们可以在现场实施抽样成品饮用水,地表水,地下水,农业径流。最后,玻璃纤维过滤是有效集中各种病原体的类型,所以只有一个方法是必要的。在这里,我们集中水性人类肠病毒, 隐孢子虫 ,S almonella肠炎,禽流感病毒的报告过滤器的有效性。

Protocol

1。准备玻璃棉使每批过滤器前后,用10%漂白粉溶液消毒工作区。 戴上手套和礼服。至少20分钟,在121°C和15磅高压灭菌消毒桶。放置在无菌桶玻璃棉。 玻璃棉与反渗透水饱和,让浸泡15分钟。 排水反渗透水从桶。 1 M盐酸饱和玻璃棉,让浸泡15分钟。 从桶里漏1 M盐酸。 用反渗透水冲洗玻璃棉。 调匀。 使用pH试纸检查pH值和重复反渗?…

Discussion

玻璃棉过滤器已使用的几个研究小组3,5,6集中精力从各种水源,如成品饮用水,地下水8,9,10地表水,海水,废水12人的肠道病毒,农业径流13。在这里,我们报告的过滤器也有效的禽流感病毒以及细菌和原生动物病原体沙门氏菌 (伤寒沙门)和隐孢子虫 ,分别在集中。 deboosere 等。最近还报道了玻璃羊毛浓度禽流感病毒14。

<p class="j…

Disclosures

The authors have nothing to disclose.

Acknowledgements

我们感谢叙述视频威廉·T·埃克特。发展的玻璃棉协议的一部分是在威斯康星州的水和卫生审判肠溶风险(WAHTER研究)资助,由美国环保署STAR格兰特R831630。 A.穿过,A. Ramey,和B Meixell阿拉斯加样品收集来自美国地质调查局的财政支持。任何贸易,产品或公司名称的使用仅是描述目的,并不意味着美国政府认可。

Materials

Name of reagent or item Company Catalogue number
Hydrochloric acid Fisher Scientific A144-500
Sodium hydroxide Fisher Scientific BP359-212
Phosphate Buffered Saline
Sodium chloride
Potassium phosphate-dibasic
Potassium phosphate-monobasic

Fisher Scientific
Fisher Scientific
Fisher Scientific

BP358-212
BP363-500
BP362-500
Sodium hypochlorite i.e., household bleach The Clorox Co.  
Sodium thiosulfate, anhydrous Fisher Scientific S 475-212
Beef extract, desiccated Becton, Dickinson and Company 211520
Glycine Fisher Scientific G46-500
Oiled sodocalcic glass wool
Or
R-11 unfaced fiberglass insulation
Isover

Johns Manville
Bourre 725 QN


Polypropylene mesh Industrial Netting xN4510
2″x4″ Sch 80 PVC threaded pipe nipple Grainger 6MW35
2″ Sch 40 PVC cap Grainger 5WDW3
Male adapter nylon fitting (1/2″x1/2″) US Plastic Corp. 62178
Sample bottles for eluate- 1 liter Fisher Scientific 03-313-4F
60 mL syringe Fisher Scientific NC9661991
pH strips Whatman 2614 991
Prefilter, Polypropylene, 10 inch cartridge, 10 μm McMaster-Carr 4411K75
Prefilter housing Cole-Parmer S-29820-10

References

  1. US Environmental Protection Agency. Method 1623: Cryptosporidium and Giardia in Water by Filtration/IMS/FA. EPA 815-R-05-002. , (2012).
  2. Cashdollar, J. L., Dahling, D. R. Evaluation of a method to re-use electropositive cartridge filters for concentrating viruses from tap and river water. J. Virol. Methods. 132, 13-17 (2006).
  3. Lambertini, E. Concentration of enteroviruses, adenoviruses, and noroviruses from drinking water by use of glass wool filters. Appl. Environ. Microbiol. 74, 2990-2996 (2008).
  4. Spackman, E. Development of a real-time reverse transcription PCR assay for Type A influenza virus and the avian H5 and H7 hemagglutinin subtypes. J. Clin. Microbiol. 40, 3256-3260 (2002).
  5. Environment Agency. Optimisation of a new method for detection of viruses in groundwater. Report No. NC/99/40. , (2000).
  6. Vilaginés, P., Sarrette, B., Husson, G., Vilaginés, R. Glass wool for virus concentration at ambient water pH level. Water Sci. Technol. 27, 299-306 (1993).
  7. Vivier, J. C., Ehlers, M. M., Grabow, W. O. Detection of enteroviruses in treated drinking water. Water Res. 38, 2699-2705 (2004).
  8. Powell, K. L., Sililo, O. . Enteric virus detection in groundwater using a glass wool trap. In: Groundwater: Past Achievements and Future Challenges. , 813-816 (2000).
  9. Hunt, R. J., Borchardt, M. A., Richards, K. D., Spencer, S. K. Assessment of sewer source contamination of drinking water wells using tracers and human enteric viruses. Environ. Sci. Technol. 44, 7956-7963 (2010).
  10. van Heerden, J., Ehlers, M. M., Heim, A., Grabow, W. O. Prevalence, quantification and typing of adenoviruses detected in river and treated drinking water in South Africa. J. Appl. Microbiol. 99, 234-242 (2005).
  11. Vilaginés, P. Round robin investigation of glass wool method for poliovirus recovery from drinking water and sea water. Water Sci. Technol. 35, 445-449 (1997).
  12. Gantzer, C., Senouci, S., Maul, A., Levi, Y., Schwartzbrod, L. Enterovirus genomes in wastewater: concentration on glass wool and glass powder and detection by RT-PCR. J. Virol. Methods. 65, 265-271 (1997).
  13. Borchardt, M. A., Jokela, W. E., Spencer, S. K. Pathogen losses in surface water runoff from dairy manure applied to corn fields. , (2011).
  14. Deboosere, N. Development and validation of a concentration method for the detection of influenza A viruses from large volumes of surface water. Appl. Environ. Microbiol. 77, 3802-3808 (2011).
  15. Lambertini, E. Virus contamination from operation and maintenance practices in small drinking water distribution systems. J. Water Health. 9, 799-812 (2011).

Play Video

Cite This Article
Millen, H. T., Gonnering, J. C., Berg, R. K., Spencer, S. K., Jokela, W. E., Pearce, J. M., Borchardt, J. S., Borchardt, M. A. Glass Wool Filters for Concentrating Waterborne Viruses and Agricultural Zoonotic Pathogens. J. Vis. Exp. (61), e3930, doi:10.3791/3930 (2012).

View Video