To conduct a rapid assessment of the function of genes in the development of cerebral cortex, we describe methods involving the ex vivo electroporation of plasmids co-expressing inhibitory RNA (RNAi) and GFP in murine embryonic cortex. This protocol is amenable to the study of various aspects of neurodevelopment such as neurogenesis, neuronal migration and neuronal morphogenesis including dendrite and axon outgrowth.
The cerebral cortex directs higher cognitive functions. This six layered structure is generated in an inside-first, outside-last manner, in which the first born neurons remain closer to the ventricle while the last born neurons migrate past the first born neurons towards the surface of the brain1. In addition to neuronal migration2, a key process for normal cortical function is the regulation of neuronal morphogenesis3. While neuronal morphogenesis can be studied in vitro in primary cultures, there is much to be learned from how these processes are regulated in tissue environments.
We describe techniques to analyze neuronal migration and/or morphogenesis in organotypic slices of the cerebral cortex4,6. A pSilencer modified vector is used which contains both a U6 promoter that drives the double stranded hairpin RNA and a separate expression cassette that encodes GFP protein driven by a CMV promoter7-9. Our approach allows for the rapid assessment of defects in neurite outgrowth upon specific knockdown of candidate genes and has been successfully used in a screen for regulators of neurite outgrowth8. Because only a subset of cells will express the RNAi constructs, the organotypic slices allow for a mosaic analysis of the potential phenotypes. Moreover, because this analysis is done in a near approximation of the in vivo environment, it provides a low cost and rapid alternative to the generation of transgenic or knockout animals for genes of unknown cortical function. Finally, in comparison with in vivo electroporation technology, the success of ex vivo electroporation experiments is not dependant upon proficient surgery skill development and can be performed with a shorter training time and skill.
1. Preparing Culture Solutions and Media (not in video)
2. Preparing Organotypic Slice Inserts (not in video)
3. Preparing for Electroporation (not in video)
4. Dissection and Electroporation (in video)
5. Embedding and Sectioning of Electroporated Cortices (in video)
6. Culture and Analysis of Organotypic Slices (in video)
7. Alternative Paraffin Embedding of Organotypic Slices (not in video)
8. Representative Results
A diagrammatic representation of the electroporation of murine cortex and culture of organotypic slices is shown in Figure 1. This method is a useful strategy for rapid assessment of the function of genes involved in neuronal development11. Depending on the amount of DNA electroporated and the embryonic stage at electroporation, the transfection efficiency will vary. Slices will start expressing GFP at least 8 hours post-electroporation and cells will undergo the normal sequence of neurogenic events (proliferation, migration, and early neuronal differentiation) in culture. Figure 2 shows an electroporated brain slice that is expressing a control pSilencer- GFP vector and one can observe neuronal progenitors, migrating neurons and differentiated neurons in the slice. Organotypic slices will keep their morphology as long as they are maintained in a good media-air interface on the membranes and can be used up to at least 5 days in culture.
Figure 1. Illustration of ex vivo electroporation and organotypic slice culture assay. E14.5 embryos are dissected out, and individually injected with DNA mixed with fast green dye in order to visualize the injection site. DNA can be injected in both the lateral ventricles as depicted in the illustration or in the third ventricle in order to fill the lateral ventricles. After injection, brains are electroporated with a square wave electroporator, placing the positive electrode on the desired side of the brain. Brains are embedded in 3% low melting point agarose and sectioned using a vibratome. 250 μm brain slices are placed on 0.4 μm inserts and cultured up to a week. GFP can be observed after 8 hours post transfection.
Figure 2. Analysis of electroporated brain slices. Electroporated brain slices were stained for Hoescht. Dorsal cortex shows electroporated neuronal progenitors at the ventricular zone (vz). Neurons in the cortical plate (cp) are delimited by the marginal zone (mz). White arrows show migrating neurons. In this case, brains were injected at E15.5 and electroporated with a pSilencer GFP control vector. The sections represent cortical explants 4 days after electroporation. Scale bar 100 μm.
Troubleshooting:
These methods involving the ex vivo electroporation of plasmids encoding double stranded RNA hairpins 8 and culture of organotypic slices4 provide several distinct advantages. First, these methods allow for a rapid assessment of RNAi-derived phenotypes. The inclusion of an expression cassette encoding GFP in the same pSilencer vector that contains the U6 promoter that drives the double stranded RNA hairpin allows for a rapid identification and characterization of cells electroporated with the RNAi vector. In addition to time-efficiency, these methods are highly cost-effective compared to the generation of several knockout lines. Second, in comparison with survival electroporation technology12 that requires longer training and skill development to ensure survival of the animal and success of the electroporation, methods described here can be performed with a shorter training time and skill. The in vivo survival surgeries are also mired by a baseline failure rate that may be associated with animal (mother and pup) morbidity. These animals will frequently need to be assessed by reasonably skilled staff and/or veterinarians from the animal facility. Third, because they are cultured for up to 5 days or more in vitro,they allow us to address a wide array of questions related to neuronal proliferation, cell fate determination, neuronal migration and the early stages of neuronal maturation (neurite outgrowth). Fourth, because we are working in culture, we are also able to add exogenous factors to test the role of growth factors and pharmaceutical agents in the neurodevelopmental mechanisms described. Fifth, the electroporation approach ex-vivo is preferable to a gene gun approach because it allows targeting of specific regions of the brains by precisely orienting the electrodes. Finally, compared to viral transduction of organotypic slices the electroporation approach allows for a higher transfection efficiency of primary cells.
These methods do have a few limitations. Unless the slice technique is modified to sustain longer culture periods, these methods may not be ideal to assess synaptogenesis or developmental events that occur later. An additional limitation may be that the reproducibility of the results is highly dependent on electrode placement. Some practice is required to ensure electroporation of the same brain region which increases reproducibility of results. Finally, the maintenance of the air/liquid interface is also crucial to ensure healthy slices. As described above, we anticipate that these skills can be easily acquired by the JoVE readers, and that the strengths of these methods greatly outweigh the limitations given the appropriate application. In summary, vertebrate neurodevelopment is controlled by a large number of genes. Neuronal morphogenesis in particular is a very interesting and important topic. This approach allows for a highly efficient method for screening gene function during neurodevelopment and may serve a very broad range of experimental purposes.
The authors have nothing to disclose.
We thank Dr. Shirin Bonni for providing the pSil-GFP construct, Dr. Alper Uzun for the illustration of Figure 1, and the Leduc Bioimaging facility for confocal microscopy. EMM is supported by the Career Award for Medical Science from the Burroughs Wellcome Fund, a NARSAD Young Investigators Award, and NIH NCRR COBRE P20 RR018728-01. SBL is supported by NIH NCRR COBRE P20 RR018728-01, and has received support from PHS NRSA 5T32MH019118-20.
Name of the reagent | Company | Catalogue number | Comments |
Hamilton syringe | HAMILTON | 80008 | 31 gauge, 0.5 inches long,PT-4 (level of point beveling), 10μl volume |
Platinum tweezertrodes | BTX | 45-0489 | 5mm size |
ECM830 electroporator | BTX | 45-0002 | |
BTX Footswitch | BTX | 45-0208 | For use with ECM830 electroporator |
Vibrating blade microtome | LEICA | VT1000 S | |
6- well dish to use with inserts | FALCON | 353502 | Contains notches to fit inserts |
Tissue culture inserts | FALCON | 353090 | 0.4 micrometer |
Fast Green | SIGMA | F7252 | |
Low Melting Agarose | FISHER | BP165-25 | DNA grade |
Laminin | Sigma-Aldrich | L2020 | |
Poly-L-lysine | Sigma-Aldrich | P5899 | |
Basal Medium Eagle | Sigma Aldrich | B-1522 | |
HBSS 10x without Ca and Mg | GIBCO | 14180-046 | |
HEPES-free acid | Sigma- Aldrich | H4034 |