11.3:

Diode: Reverse bias

JoVE 핵심
Electrical Engineering
JoVE 비디오를 활용하시려면 도서관을 통한 기관 구독이 필요합니다.  전체 비디오를 보시려면 로그인하거나 무료 트라이얼을 시작하세요.
JoVE 핵심 Electrical Engineering
Diode: Reverse bias

76 Views

01:14 min

July 08, 2024

A diode is reverse-biased when the positive terminal of an external voltage source is connected to the n-type material and the negative terminal to the p-type material. This configuration opposes the natural direction of current flow through the diode, effectively increasing the width of the depletion region and the barrier potential. The reverse bias condition produces a minimal leakage current, primarily due to minority charge carriers. This leakage becomes significant when the reverse voltage surpasses the thermal voltage under standard room conditions, leading to a flattened current-voltage (I-V) response curve. Unlike the exponential current increase observed in forward bias, the increase in reverse bias is negligible.

However, in practice, the reverse current in diodes often exceeds the predicted saturation current. For instance, diodes designed for small signals with femtoampere-level reverse saturation currents may exhibit nanoampere-level reverse currents. While this reverse current slightly increases with the reverse voltage, these changes are too small to affect the I-V curve noticeably. This reverse current originates from thermal carrier generation within the junction, depending on the diode junction's physical dimensions.

A sharp increase in reverse current occurs when the applied reverse voltage reaches a critical threshold known as the breakdown voltage, specific to each diode. This phenomenon, represented by the knee on the I-V curve, signifies a substantial current rise with minimal voltage increase.

Figure 1

It's essential to recognize that diode breakdown is not inherently damaging, provided the current stays within its safe operating area, typically defined by its maximum power dissipation capacity in the datasheet. External circuitry, designed to limit reverse current to safe levels, is necessary to prevent potential damage. Zener diodes, engineered to function within the breakdown region for voltage regulation, exemplify diodes that operate safely under these conditions.