3.10:

Pore Transport and Ion-Pair Transport

JoVE 핵심
Pharmacokinetics and Pharmacodynamics
JoVE 비디오를 활용하시려면 도서관을 통한 기관 구독이 필요합니다.  전체 비디오를 보시려면 로그인하거나 무료 트라이얼을 시작하세요.
JoVE 핵심 Pharmacokinetics and Pharmacodynamics
Pore Transport and Ion-Pair Transport

47 Views

01:17 min

October 10, 2024

Pore transport and ion-pair formation are critical mechanisms for the absorption and distribution of drugs in the body.

Pore transport, also known as convective transport, is a process where small molecules like urea, water, and sugars rapidly cross cell membranes as though there were channels or pores in the membrane. Although direct microscopic evidence is limited  but the concept of pores or channels is widely accepted based on physiological evidence. Despite the lack of direct microscopic evidence of such pores, this model explains renal drug excretion and hepatic drug uptake. Transport proteins may form an open channel across the cell's lipid membrane, facilitating faster diffusion of small molecules, including drugs, compared to other parts of the membrane.

On the other hand, ion-pair formation involves the binding of oppositely charged ions to form a neutral complex. The strong electrolyte drugs maintain their charge at all physiological pH values and penetrate membranes poorly. However, when paired with an oppositely charged ion, a neutral ion pair forms, which diffuses more easily across the membrane. Examples include propranolol, which forms an ion pair with oleic acid, and quinine, which pairs with hexyl salicylate.

The use of ion pairs has intriguing applications, such as the complexation of amphotericin B and DSPG in certain amphotericin B/liposomal products. Here, ion pairing can transiently alter distribution, reduce high plasma-free drug concentration, and decrease renal toxicity.