20.3:

Deformations in a Symmetric Member in Bending

JoVE 핵심
Mechanical Engineering
JoVE 비디오를 활용하시려면 도서관을 통한 기관 구독이 필요합니다.  전체 비디오를 보시려면 로그인하거나 무료 트라이얼을 시작하세요.
JoVE 핵심 Mechanical Engineering
Deformations in a Symmetric Member in Bending

45 Views

01:18 min

May 23, 2024

When analyzing the deformation of a symmetric prismatic member subjected to bending by equal and opposite couples, it becomes clear that as the member bends, the originally straight lines on its wider faces curve into circular arcs, with a constant radius centered at a point known as Point C. This phenomenon helps to understand the stress and strain distribution within the member more clearly.

When the member is segmented into tiny cubic elements, it is observed that the primary stress experienced within the member is normal stress, leading to uniaxial stress conditions at any point. This arrangement reveals the existence of a neutral surface, where both the strain and stress longitudinal components are zero. This surface runs parallel to the upper and lower faces of the member, and the distance from the neutral surface to point C is ρ

To explore the deformation of this member, consider an arc at a distance y from the neutral surface. The deformation is the difference in lengths from point C between the arc at y (L') and the neutral surface arc (L). Dividing the deformation δ = L' – L by the length of the neutral arc shows that the longitudinal normal strain varies linearly with the distance from the neutral surface. By applying Hooke's Law, which relates stress and strain in elastic materials, the stress can be determined at any point based on its distance from the neutral surface.