8.7:

Estimating Population Standard Deviation

JoVE 핵심
통계학
JoVE 비디오를 활용하시려면 도서관을 통한 기관 구독이 필요합니다.  전체 비디오를 보시려면 로그인하거나 무료 트라이얼을 시작하세요.
JoVE 핵심 통계학
Estimating Population Standard Deviation

2,761 Views

00:00 min

April 30, 2023

When the population standard deviation is unknown and the sample size is large, the sample standard deviation s is commonly used as a point estimate of σ. However, it can sometimes under or overestimate the population standard deviation. To overcome this drawback, confidence intervals are determined to estimate population parameters and eliminate any calculation bias accurately. However, this only applies to random samples from normally distributed populations. Knowing the sample mean and standard deviation, one can construct confidence intervals for the population standard deviations at a suitable significance level, such as 95%. A confidence interval is an interval of numbers. It provides a range of reasonable values in which we expect the population parameter to fall. There is no guarantee that a given confidence interval does capture the population standard deviation, but there is a predictable probability of success. The critical values in the right and left tails of the distribution curve provide the confidence intervals of the population standard deviation.

This text is adapted from Openstax, Introductory Statistics, Section 8, Confidence Interval