15.20:

C–C Bond Cleavage: Retro-Aldol Reaction

JoVE 핵심
Organic Chemistry
JoVE 비디오를 활용하시려면 도서관을 통한 기관 구독이 필요합니다.  전체 비디오를 보시려면 로그인하거나 무료 트라이얼을 시작하세요.
JoVE 핵심 Organic Chemistry
C–C Bond Cleavage: Retro-Aldol Reaction

4,417 Views

00:00 min

April 30, 2023

The reverse of the aldol addition reaction is called the retro-aldol reaction. Here, the carbon–carbon bond in the aldol product is cleaved under acidic or basic conditions to form two molecules of carbonyl compounds. The mechanism of the reaction consists of three steps.

In the first step, as depicted in Figure 1, the base deprotonates the β-hydroxy ketone at the hydroxyl group to form an alkoxide ion.

Figure1

Figure 1. The deprotonation of a β-hydroxy ketone to form an alkoxide ion.

Figure 2 shows the second step, which involves the cleavage of the carbon–carbon bond to yield a ketone molecule and an enolate ion.

Figure2

Figure 2. The formation of an enolate ion.

Finally, as illustrated in Figure 3, the enolate ion is protonated to form the second ketone molecule.

Figure3

Figure 3. The protonation of enolate generates a second ketone.

Similarly, the β-hydroxy aldehyde in the presence of a base undergoes the retro-aldol reaction to produce two aldehyde molecules.