12.2:

Static Equilibrium – II

JoVE 핵심
물리학
JoVE 비디오를 활용하시려면 도서관을 통한 기관 구독이 필요합니다.  전체 비디오를 보시려면 로그인하거나 무료 트라이얼을 시작하세요.
JoVE 핵심 물리학
Static Equilibrium – II

6,434 Views

01:07 min

April 30, 2023

Static equilibrium is a special case in mechanics that is very important in everyday life. It occurs when the net force and the net torque on an object or system are both zero. This means that both the linear and angular accelerations are zero. Thus, the object is at rest, or its center of mass is moving at a constant velocity. However, this does not mean that no forces are acting on the object within the system. In fact, there are very few scenarios on Earth in which no forces are acting upon any given object. If a person walks across a bridge, for example, they exert a downward force on the bridge proportional to their mass, and the bridge exerts an equal and opposite upward force on the person. In some cases, the bridge may flex in response to the downward force of the person, and in extreme cases, when the forces are great enough, the bridge may become seriously deformed or may even fracture. 

The application of static equilibrium can be seen in bridges, towers, and other complex systems. For instance, all bridges are under some amount of stress, from both their own weight and the weight of the loads moving across. Suspension bridges, like the Golden Gate bridge, are a complex system of objects under very heavy forces and in equilibrium. The cables that hold the bridge up are elastic, and their elasticity was considered when the structural engineers designed it. Similarly, skyscrapers have a complex system of steel beams under tremendous forces, which altogether compose a rigid system in static equilibrium. Elasticity plays a role in the materials used to construct buildings, as they need to be able to withstand a certain amount of flexing, especially in areas where earthquakes are prevalent. Furthermore, the cranes used to construct these buildings are also in equilibrium, with a complex system of cables and pulleys to lift and lower the construction materials.

This text is adapted from Openstax, University of Physics Volume 1, Section 12.1: Conditions for Static Equilibrium.