8.10:

Force and Potential Energy in Three Dimensions

JoVE 핵심
물리학
JoVE 비디오를 활용하시려면 도서관을 통한 기관 구독이 필요합니다.  전체 비디오를 보시려면 로그인하거나 무료 트라이얼을 시작하세요.
JoVE 핵심 물리학
Force and Potential Energy in Three Dimensions

4,474 Views

01:04 min

April 30, 2023

Consider a particle moving under the action of a conservative force that has components along each coordinate axis. Each component of force is a function of the coordinates. The potential energy function U is also a function of all three spatial coordinates. Force in one dimension can be written as the negative ratio of potential energy change to the displacement along that coordinate. For minimal displacement, the ratios become derivatives. If a function has many variables, the derivative only takes the variable that the partial derivative specifies; the other variables are held constant. Thus, adding the force along the three spatial coordinates, the net force can be written as the vector sum of partial derivatives of potential energy with respect to each coordinate, multiplied by the corresponding unit vector. In other words, force in three dimensions can be expressed as the negative of the gradient of the potential energy function.

Let us understand this with the help of an example. The potential energy of a 3-dimensional force is given by

Figure1

where k is a constant. Derive Fx, Fy, and Fz, and then describe the total force at each point in terms of its coordinates. Here, the known quantity is potential energy. The unknown quantities Fx, FyFz, and the total force vector need to be calculated. Force is related to potential energy by  the following equation:

Figure2

Substitution of U in the above equation gives the expression for Fx, Fy, and Fz in terms of the coordinates x, y, and z. The vector force is the sum of the force along each coordinate. In other words,

Figure3

Substituting the values of  Fx, Fy, and Fz in the above equation, we get the net force vector as

Figure4

This text is adapted from Openstax, University Physics Volume 1, Section 8.4: Potential Energy Diagrams and Stability.