Back to chapter

2.5:

Structure of Lipids

JoVE 핵심
Molecular Biology
JoVE 비디오를 활용하시려면 도서관을 통한 기관 구독이 필요합니다.  전체 비디오를 보시려면 로그인하거나 무료 트라이얼을 시작하세요.
JoVE 핵심 Molecular Biology
Structure of Lipids

Languages

소셜에 공유하기

שומנים הם קבוצה של מולקולות הידרופוביות הכוללות טריגליצרידים, המשמשים לאחסון אנרגיה, ופוספוליפידים, שהם המרכיבים המבניים העיקריים של קרומי תא. טריגליצרידים ורוב הפוספוליפידים מכילים גליצרול ושרשראות של חומצות שומן. לחומצות שומן יש קבוצות מתיל בקצה אחד של השרשרת וקבוצות קרבוקסיל בקצה הנגדי.הפחמן המחובר לקבוצת הקרבוקסיל נקרא פחמן אלפא, והפחמן של קבוצת המתיל נקרא פחמן אומגה. חומצות שומן שונות באורכן ובנוכחות של קשרים כפולים בשרשרת הפחמימנית. החומצות בעלות הקשרים הכפולים הן חומצות שומן בלתי רווי ואילו החומצות בעלות הקשר היחיד הן חומצות שומן רוויות מפני שהן רוויות במספר הגדול ביותר האפשרי של אטומי מימן.לעיתים קרובות לחומצות שומן יש שמות נפוצים אך ניתן לתת להן שמות באופן שיטתי לפי מספר אטומי הפחמן ולפי המספר והמיקום של הקשרים הכפולים בשרשרת הפחמן. קיימות כמה שיטות מספור נפוצות. שיטת המספור המבוססת על התייחסות לקרבוקסיל סופרת את המיקומים של כל הקשרים הכפולים מהפחמן הקרבוקסילי הממוספר כ-1.שיטת המספור המתייחסת לאומגה בודקת את המיקום של הקשר הכפול הקרוב ביותר לפחמן האומגה, כשפחמן האומגה מסומן כמספר 1. לדוגמה, לחומצה לינולנית, חומצת שומן אומגה 3, יש 18 פחמנים וקשרים כפולים במיקום 9, 12 ו-15 בספירה שמתחילה בקצה של הקרבוקסיל. זה ייקרא 18:3 דלתא 9, 12, 15 לפי שיטת הספירה הקרבוקסילית ו-18:3 לפי שיטת אומגה.חומצות שומן בלתי רוויות יכולות להתקיים בשתי תצורות:ציס וטרנס. בתצורת ציס, המימנים על הפחמנים הקשורים בקשר כפול נמצאים באותו צד של הקשר, בעוד שבתצורת טרנס, המימנים ממוקמים בצדדים המנוגדים. באופן מבני, לחומצות שומן ציס יש שרשראות מכופפות, בעוד שלחומצות שומן טרנס יש שרשראות ישרות.צריכת שומן טרנס התגלתה כאחראית לכמה מחלות קרדיו-וסקולריות, בעוד שצריכת חומצות שומן ציס כגון אומגה-3 ואומגה-6 ידועה כמועילה לבריאות. טריגליצרידים, המוכרים בכינוי שומנים, משמשים בעיקר לאחסון אנרגיה. הם מורכבים משלוש חומצות שומן הקשורות לגליצרול באמצעות קשרי אסטר בין קצות ההידרוקסיל של גליצרול וקצות הקרבוקסיל של חומצות השומן, מה שמוביל לתצורת מולקולה לא קוטבית.אם כל שלוש חומצות השומן הן מאותו סוג, הן ידועות כטריגליצרידים פשוטים. אם שלוש חומצות השומן שונות זו מזו, הן ידועות כטריגליצרידים מעורבים. סוג נוסף של שומן, פוספוליפידים, הוא מאפיין מבני חשוב של קרומים ביולוגיים.יש להם ראשים הידרופיליים, המורכבים מקבוצות פוספטים ששונו על ידי קבוצת אלכוהול הידרופילי וזנבות חומצות שומן הידרופוביים. יכולים להתקיים שילובים שונים בין הראשים והזנבות הללו, מה שמוביל לסוגים שונים של שומנים בקרום. גליצרופוספוליפידים הם סוג נפוץ של פוספוליפיד המכיל שתי חומצות שומן וקבוצה קוטבית ביותר הקשורה לכל פחמן של גליצרול באמצעות קשרי אסטר ופוספודיאסטר, בהתאמה.

2.5:

Structure of Lipids

Lipids include a diverse group of compounds that are largely nonpolar in nature. This is because they are hydrocarbons that include mostly nonpolar carbon-carbon or carbon-hydrogen bonds. Non-polar molecules are hydrophobic (“water fearing”), or insoluble in water. Lipids perform many different functions in a cell. Cells store energy for long-term use in the form of fats. Lipids also provide insulation from the environment for plants and animals. For example, they help keep aquatic birds and mammals dry when forming a protective layer over fur or feathers because of their water-repellant hydrophobic nature. Lipids are also the building blocks of many hormones and are an important constituent of all cellular membranes. Lipids include fats, oils, waxes, phospholipids, and steroids.

General Structure of Lipids

A fat molecule consists of two main components—glycerol and fatty acids. Glycerol is an organic compound (alcohol) with three carbons, five hydrogens, and three hydroxyl (OH) groups. Fatty acids have a long chain of hydrocarbons to which a carboxyl group is attached, hence the name “fatty acid.” The number of carbons in the fatty acid may range from 4 to 36. The most common are those containing 12–18 carbons. In a fat molecule, the fatty acids attach to each of the glycerol molecule’s three carbons with an ester bond through an oxygen atom. Joining three fatty acids to a glycerol backbone in a dehydration reaction forms triacylglycerol. The three fatty acids in the triacylglycerol may be similar or dissimilar.

A phospholipid is another common type of lipid. It is an amphipathic molecule, meaning it has a hydrophobic and a hydrophilic part. The fatty acid chains are hydrophobic and cannot interact with water; whereas, the phosphate-containing group is hydrophilic and interacts with water. The hydrophilic head groups of the phospholipids face the aqueous solution. The hydrophobic tails are sequestered in the middle of the bilayer.

Fatty Acids

Fatty acids may be saturated or unsaturated. In a fatty acid chain, if there are only single bonds between neighboring carbons in the hydrocarbon chain, the fatty acid is saturated. Stearic acid is an example of a saturated fatty acid.

When the hydrocarbon chain contains a double bond, the fatty acid is unsaturated. Oleic acid is an example of an unsaturated fatty acid. Most unsaturated fats are liquid at room temperature and are called oils. If there is one double bond in the molecule, then it is a monounsaturated fat (e.g., olive oil), and if there is more than one double bond, then it is a polyunsaturated fat (e.g., canola oil). Long straight fatty acids with single bonds generally pack tightly and are solid at room temperature. Animal fats with stearic acid and palmitic acid (common in meat) and the fat with butyric acid (common in butter) are examples of saturated fats.

Fatty acids can additionally be classified into Cis and trans. Cis and trans indicate the configuration of the molecule around the double bond. If hydrogens are present in the same plane, it is a cis fat. If the hydrogen atoms are on two different planes, it is a trans fat. The cis double bond causes a bend or a “kink” that prevents the fatty acids from packing tightly, keeping them liquid at room temperature. Olive oil, corn oil, canola oil, and cod liver oil are examples of unsaturated fats. Unsaturated fats help to lower blood cholesterol levels; whereas, saturated fats contribute to plaque formation in the arteries.

Trans Fats

The food industry artificially hydrogenates oils to make them semi-solid and of a consistency desirable for many processed food products. During this process, double bonds of the cis– conformation in the hydrocarbon chain may convert to double bonds in the trans– conformation.

Margarine, some types of peanut butter, and shortening are examples of artificially hydrogenated trans fats. Recent studies have shown that an increase in trans fats in the human diet may lead to higher levels of low-density lipoproteins (LDL), or “bad” cholesterol, which in turn may lead to plaque deposition in the arteries, resulting in heart disease.

Omega Fatty Acids

Essential fatty acids are those that the human body requires but does not synthesize. Consequently, they have to be supplemented through ingestion via the diet. Omega-3 fatty acids fall into this category and are one of only two known for humans (the other is omega-6 fatty acid). These are polyunsaturated fatty acids and are omega-3 because a double bond connects the third carbon from the hydrocarbon chain’s end to its neighboring carbon.

Alpha-linolenic acid is an example of an omega-3 fatty acid. It has three cis double bonds and, as a result, a curved shape. Salmon, trout, and tuna are good sources of omega-3 fatty acids. Research indicates that omega-3 fatty acids reduce the risk of sudden death from heart attacks, lower triglycerides in the blood, decrease blood pressure, and prevent thrombosis by inhibiting blood clotting. They also reduce inflammation and may help lower the risk of some cancers in animals.

This text is adapted from Openstax, Biology 2e, Chapter 3.3: Lipids.