30.4:

Genetics of Speciation

JoVE 핵심
생물학
JoVE 비디오를 활용하시려면 도서관을 통한 기관 구독이 필요합니다.  전체 비디오를 보시려면 로그인하거나 무료 트라이얼을 시작하세요.
JoVE 핵심 생물학
Genetics of Speciation

16,965 Views

02:16 min

February 27, 2020

Speciation is the evolutionary process resulting in the formation of new, distinct species—groups of reproductively isolated populations.

The genetics of speciation involves the different traits or isolating mechanisms preventing gene exchange, leading to reproductive isolation. Reproductive isolation can be due to reproductive barriers that have effects either before or after the formation of a zygote. Pre-zygotic mechanisms prevent fertilization from occurring, and post-zygotic mechanisms reduce the viability, or reproductive capacity, of the hybrid offspring.

For example, pre-zygotic mechanisms act early in the life cycle of an organism, imposing the strongest impediment to gene flow, and preventing unfavorable mating combinations. Some mating combinations produce hybrid individuals. Natural selection can work against the production of hybrids with low fitness, thereby increasing reproductive isolation between two species.

Post-zygotic reproductive barriers can be due to the intrinsic inviability of hybrids. Genetic complications resulting from aberrant ploidy levels, different chromosomal arrangements, or gene incompatibilities where the alleles do not function properly contribute to different genetic makeup and alternative developmental pathways in hybrids. These genetic alterations affect both plants and animals, leading to post-zygotic isolation and speciation.

Epistasis, or non-allelic gene interactions, is a distinctive feature contributing to speciation. The effect of a gene variant is dependent on the genetic background in which it appears. For example, an allele giving rise to a normal phenotype in members of the same species may function poorly in the genetic environment of hybrids. This hybrid weakness can also lead to reproductive isolation and speciation.