We report a simple, time-efficient and high-throughput fluorescence spectroscopy-based assay for the quantification of actin filaments in ex vivo biological samples from brain tissues of rodents and human subjects.
Actin, the major component of cytoskeleton, plays a critical role in the maintenance of neuronal structure and function. Under physiological states, actin occurs in equilibrium in its two forms: monomeric globular (G-actin) and polymerized filamentous (F- actin). At the synaptic terminals, actin cytoskeleton forms the basis for critical pre- and post-synaptic functions. Moreover, dynamic changes in the actin polymerization status (interconversion between globular and filamentous forms of actin) are closely linked to plasticity-related alterations in synaptic structure and function. We report here a modified fluorescence-based methodology to assess polymerization status of actin in ex vivo conditions. The assay employs fluorescently labelled phalloidin, a phallotoxin that specifically binds to actin filaments (F-actin), providing a direct measure of polymerized filamentous actin. As a proof of principle, we provide evidence for the suitability of the assay both in rodent and post-mortem human brain tissue homogenates. Using latrunculin A (a drug that depolymerizes actin filaments), we confirm the utility of the assay in monitoring alterations in F-actin levels. Further, we extend the assay to biochemical fractions of isolated synaptic terminals wherein we confirm increased actin polymerization upon stimulation by depolarization with high extracellular K+.
Cytoskeletal protein actin is involved in multiple cellular functions, including structural support, cellular transport, cell motility and division. Actin occurs in equilibrium in two forms: monomeric globular actin (G-actin) and polymerized filamentous actin (F-actin). Rapid changes in the polymerization status of actin (interconversion between its G- and F- forms) result in rapid filament assembly and disassembly and underlie its regulatory roles in cellular physiology. Actin forms the major component of the neuronal cytoskeletal structure and influences a wide range of neuronal functions1,2. Of note, the actin cytoskeleton forms an integral part of the structural platform of the synaptic terminals. As such, it is a major determinant of synaptic morphogenesis and physiology and plays a fundamental role in control of the size, number and morphology of synapses3,4,5. In particular, dynamic actin polymerization-depolymerization is a key determinant of the synaptic remodelling associated with synaptic plasticity underlying the memory and learning processes. Indeed, both presynaptic (such as neurotransmitter release6,7,8,9,10) and postsynaptic functions (plasticity related dynamic remodeling11,12,13,14) critically rely on dynamic changes in the polymerization status of the actin cytoskeleton.
Under physiological conditions, F-actin levels are dynamically and tightly regulated through a multimodal pathway involving posttranslational modification4,15,16 as well as actin-binding proteins (ABPs)4,17. ABPs can influence actin dynamics at multiple levels (such as initiating or inhibiting polymerization, inducing filament branching, severing of filaments to smaller pieces, promoting depolymerization, and protecting against depolymerization), and are in-turn under a stringent modulatory control sensitive to various extra- and intracellular signals18,19,20. Such regulatory checks at multiple levels dictate a strict regulation of actin dynamics at the synaptic cytoskeleton, fine-tuning pre- and postsynaptic aspects of neuronal physiology both at the basal and activity-induced states.
Given the important roles of actin in neuronal physiology, it is not surprising that several studies have provided evidence for alterations in actin dynamics as critical pathogenic events linked to a wide range of neurological disorders including neurodegeneration, psychological diseases as well as neurodevelopmental ailments3,21,22,23,24,25,26,27. In spite of the wealth of research data pointing to key roles of actin in neuronal physiology and pathophysiology, however, significant gaps still remain in the understanding of actin dynamics, particularly at the synaptic cytoskeleton. More research studies are needed to have a better comprehension of neuronal actin and its alterations under pathological conditions. One major area of focus in this context is the assessment of actin polymerization status. There are Western blotting-based commercial kits (G-Actin/F-Actin in vivo assay biochemical kit; Cytoskeleton SKU BK03728,29) and home-made assays for the assessment of F-actin levels6. However, because these require biochemical isolation of F-actin and G-actin and because their subsequent quantification is based upon immunoblotting protocols, they can be time consuming. We herein report a fluorescence spectroscopy-based assay adapted from a previous study30 with modifications that can be used to evaluate both basal levels of F-actin, as well as dynamic changes in its assembly-disassembly. Notably, we have efficiently modified the original protocol that requires samples suitable for a 1 mL cuvette to the current 96-well plate format. The modified protocol has therefore significantly reduced the tissue/sample amount required for the assay. Further, we provide evidence that the protocol is suitable for not only brain tissue homogenates, but also subcellular fractions such as isolated synaptic terminals (synaptosomes and synaptoneurosomes). Lastly, the assay can be employed for freshly dissected rodent brain tissues and long-term stored post-mortem human brain samples. Of note, while the assay is presented in a neuronal context, it can be suitably extended to other cell-types and physiological processes associated with them.
All experimental procedures were carried out in accordance with the regulations of the University of Otago Committee on Ethics in the Care and Use of Laboratory Animals (Ethics Protocol No. AUP95/18 and AUP80/17) and New Zealand legislature. Human brain tissues were obtained from the Neurological Tissue Bank of Hospital Clínic-IDIBAPS BioBank in Barcelona, Spain. All tissue collection protocols were approved by the Ethics Committee of Hospital Clínic, Barcelona, and informed consent was obtained from the families.
1. Preparation of buffers and reagents
2. Brain tissue homogenization
3. Preparation of isolated nerve terminals
4. KCl-mediated depolarization of isolated synaptic terminals
5. Fixation and phalloidin staining of samples
6. Fluorometric analysis and light scattering
7. Data analysis
Linearity of the assay for evaluation of F-actin levels
First, a standard curve for the linear increase in fluorescence of Alexa Fluor 647 Phalloidin was ascertained and was repeated for each set of experiments (Figure 1). To investigate the linear range of the assay, different amounts of brain homogenates from rodents (Figures 2A and 2B) and post-mortem human subjects (Figure 3A and 3B) were processed. The assay was found to be linear in the range of 50-200 μg of protein as assessed by amounts of labeled phalloidin retained. Light scattering at 540 nm was used to confirm the different amounts of samples (Figure 2C and Figure 3C).
Latrunculin, an actin depolymerizing agent reduces binding of labelled phalloidin
Latrunculin A is known to depolymerize actin filaments and reduce the levels of F-actin36,37,38,39. Homogenates from either rodent or human brain tissues were incubated with 2 μM latrunculin A for 1 hour at 37 °C to depolymerize actin filaments. Respective untreated control sets were incubated with DMSO for the same duration of 1 hour at 37 °C. The assay robustly measured the loss of F-actin levels from 95.7 ± 6.6 (mean ± SEM) in control samples to 72.0 ± 3.2 (mean ± SEM) μU of bound phalloidin in latrunculin A-treated samples in rodent brain homogenates (Figure 4A). A similar decrease (from 83.7 ± 3.9 to 66.9 ± 4.2 μU) in retention of labeled phalloidin was also observed when homogenates from human brain tissues were subjected to latrunculin A treatment (Figure 4B). Noteworthy, total actin levels, as assessed by immunoblotting, did not alter upon treatment with latrunculin A in both rat (Supplementary Figure 1A-B) and human (Supplementary Figure 1C-D) brain homogenates.
Depolarization of isolated synaptic terminalsstimulates actin polymerization and filament formation
Ex vivo depolarization of isolated synaptic terminals has been shown to result in rapid stimulation of actin polymerization6,30,40, and this phenomenon was used as a further confirmation of the assay reported herein. Biochemical fractions enriched in synaptic terminals were prepared in two different manners; a gradient-based ultracentrifugation method to obtain "synaptosomes"41,42,43,44 and a sequential filtration-based protocol to obtain "synaptoneurosomes"43,45,46. Because the yield for the latter is higher, we used it for human post-mortem brain tissues wherein the tissue amounts are often limiting. On the other hand, we preferred to use synaptosomes with a higher degree of enrichment of synaptic fragments41 for our rat brain tissue experiments.
Depolarization of synaptosomes or synaptoneurosomes and stimulation of actin polymerization were achieved by a short (30 second) burst of increase in extracellular K+ to 50 mM. KCl exposure resulted in increased phalloidin binding by almost 40% in rodent brain synaptosomes compared to the respective mock-stimulated controls (Figure 5A; see also Supplementary Figure 2A). A smaller (around 20%) but consistent increase was also observed in human synaptoneurosomes treated with KCl (Figure 5B; see also Supplementary Figure 2A). These experiments validate the robustness of our assay in determining alterations in F-actin levels in brain tissue samples, including isolated synaptic terminals.
Figure 1. Standard curve for fluorescence of Alexa Fluor 647 Phalloidin. Linearity of fluorescence emission of different amounts (25-500 μU) of labeled phalloidin was confirmed by fluorescence spectroscopy at an excitation of 645 nm and emission of 670 nm (R2 = 0.9942). Data are represented as mean ± SEM (n=3). Please click here to view a larger version of this figure.
Figure 2. Linearity of phalloidin binding to whole-cell homogenates from rat brain tissue. (A) Binding of phalloidin to different amounts of homogenates (50-300 μg protein) was assessed. (B) Binding was linear in the range of 50-200 μg protein (R2 = 0.9602). (C) Scattering at 540 nm was used to confirm different amounts of the samples (R2 = 0.8319). Data are represented as mean ± SEM (n=4). Please click here to view a larger version of this figure.
Figure 3. Phalloidin binding to whole-cell homogenates from post-mortem human brain tissue. (A) Phalloidin retention in a range of amounts of homogenates (50-300 μg protein) was evaluated. (B) Phalloidin binding was found to be linear in the range of 50-200 μg protein (R2 = 0.8832). (C) Scattering at 540 nm confirmed the varying amounts of the samples (R2 = 0.9730). Data are represented as mean ± SEM (n=4). Please click here to view a larger version of this figure.
Figure 4. Effects of latrunculin A on F-actin levels. Treatment of brain homogenates with actin depolymerizing agent Latrunculin A (2 μM, 1 h at 37°C) resulted in significant decrease in the amounts of actin filaments compared to the respective mock-treated control samples as assessed by retention of labeled phalloidin both in rodent (p = 0.0034; paired two-tailed Student's t-test) (A) and post-mortem human tissues (p = 0.0011; paired two-tailed Student's t-test) (B). Data are represented as mean ± SEM (n=6 pairs). Please click here to view a larger version of this figure.
Figure 5. Effects of KCl-mediated depolarization on F-actin amounts in isolated synaptic terminals. (A) Incubation of synaptosomes from rat brain with 50 mM KCl for 30 s at 37°C stimulated actin polymerization which consequently resulted in an increase in phalloidin binding (p = 0.0014; paired two-tailed Student's t-test). (B) A smaller increase was also observed in synaptoneurosomal fraction from post-mortem human brain tissues (p = 0.014; paired two-tailed Student's t-test). Data are represented as mean ± SEM (n=6 pairs). Please click here to view a larger version of this figure.
Supplementary Figure 1. Effects of latrunculin A on total actin levels. Brain homogenates were incubated with latrunculin A (2 μM, 1 h at 37°C) or equal volume of DMSO (1 h at 37°C). 10 μg protein per sample (latrunculin A treated and DMSO mock-treated controls) were collected prior to fixation. Total actin levels were assessed by immunoblotting. Representative blots are shown for rat (A) and human (C) brain homogenates. Latrunculin A did not alter the total actin levels in both rat (B; p = 0.40; paired two-tailed Student's t-test) and human (D; p = 0.42; paired two-tailed Student's t-test) brain homogenates. Data are represented as mean ± SEM (n=3 pairs). Please click here to download this File.
Supplementary Figure 2. Effects of KCl-mediated depolarization on F-actin levels in rat synaptosomes and human synaptoneurosomes. (A) Incubation of synaptosomes from rat brain with 50 mM KCl (30 s at 37 °C) stimulated actin polymerization and a consequent increase in phalloidin binding (p = 0.0019; paired two-tailed Student's t-test). (B) Increase in phalloidin retention was also observed in human synaptoneurosomal fraction depolarized by KCl compared to the respective unstimulated controls (p = 0.015; paired two-tailed Student's t-test). Data are represented as mean ± SEM (n=6 pairs). Please click here to download this File.
The assay described here, essentially adapted from a previous study30 with modifications, employs a phallotoxin, phalloidin tagged with a fluorescent label. Fluorescent phalloidin analogs are considered to be the gold standard for staining actin filaments in fixed tissues47,48,49. In fact, they are the oldest tools to specifically identify actin filaments50 and still remain the most widely used instruments to detect actin filaments particularly for subsequent fluorescence microscopy-based analyses. Importantly, phalloidin has been shown to stain even loose, irregular meshwork of short actin filaments51, indicating that phalloidin binding is not dependent on the filament length. Our protocol, on the other hand, relies on fluorescence spectroscopy to analyze actin dynamics in ex vivo biological samples, for example brain tissues from rodents and humans.
The major advantage of the protocol is that it considerably reduces the time taken with respect to the existing protocols that first require a high-speed centrifugation-based biochemical isolation of F-actin (separation from G-actin based on insolubility of actin filaments in certain detergents such as Triton X-100) and subsequent analysis of immunoreactive levels using Western blotting6,28,29. The time-efficiency of our assay is also an advantage with regards to phalloidin-based immunocytochemistry techniques40,52, although there might be some other benefits associated with the latter. Another advantage is that it can be applied to cryopreserved post-mortem human brain tissues, procurement of which is always associated with some post-mortem delay. Further, with respect to the original protocol30 from which this methodology has been modified, we have considerably reduced the requirement for the tissue amount from 1 mL cuvette to a single well of a 96-well plate. Moreover, because of the inclusion of a phalloidin standard curve in each set of experiment, our protocol can quantitate absolute levels of actin filaments in units of phalloidin bound (Figures 2A-B, 3A, 4A-B; see also Supplementary Figure 2), as well as the levels relative to control samples (Figure 5A-B).
It should be noted that the application of phalloidin to assess F-actin levels however is restricted to fixed cells and samples, both for our assay protocol as well as microscopy-based protocols. This is because phalloidin is essentially a toxic bicyclic heptapeptide that binds specifically at the interface between F-actin subunits with high affinity and stabilizes these actin filaments, rendering them incapable to depolymerize and in fact increasing the net conversion of G-actin into F-actin40,53,54. Hence, phalloidin stabilizes actin filaments in vivo and in vitro, and can result in significant changes in the equilibrium status of actin per se47,55. As such evaluation of actin polymerization status mediated by fluorescent phalloidin is based upon arrested filament structures. Moreover, because of its low permeability through the lipid bilayer, phalloidin-based methodologies rely on permeabilization of the cells or biological samples. Infeasibility of a time course live-cell assay is hence a major limitation of the protocol as with immunocytochemistry-based methods employing phalloidin.
Infeasibility of phalloidin-based methods to evaluate dynamic changes in actin filaments in live unfixed cells begs the question of whether there are alternative procedures to do so. Indeed, advances have been made in this regard with exogenous expression of fluorescent-actin analogs prior to analysis using protocols such as video micrography36,56, fluorescence recovering after photobleaching (FRAP)38 or fluorescence resonance energy transfer (FRET)39. Heterologous expression of fluorescently tagged peptides and proteins that bind actin filaments are also employed to study actin dynamics in live cells; however there are disadvantages and limitations associated with them as well as with the heterologous expression of fluorescently tagged actin47,49,57. For example, G-actin that comprises 50-70% of total actin in most cells is soluble and freely diffusible in the cytosol, resulting in a higher background causing challenges in differentiating signals from actin filaments specifically57.
A critical factor in the assay is that as shown in Figure 2 and Figure 3; it is not linear throughout the range of protein amounts tested. Hence, an optimal amount of protein suitable for the assay should be determined first or the amount of phalloidin analog should be adjusted such that it is no longer limiting (at higher amounts of proteins). Another critical aspect of the protocol is that the multiple centrifugation-based steps for removal of fixative, permeabilization agent and unbound phalloidin can lead to varying loss of proteins (and F-actin bound phalloidin) from the samples, particularly when lower amounts of samples are used. Hence it is important to normalize the amount of sample retained by monitoring light scattering at 540 nm. Lastly, since actin is in a dynamic state of interconversion between its F- and G-forms, fixing should be fast. A minor related critical aspect of the assay is that we could not evaluate its efficiency in assessing pharmacological actin polymerization. As opposed to pharmacological actin depolymerization by latrunculin A, jasplakinolide (a reliable and widely used actin polymerizing agent) has overlapping binding sites with phalloidin and competitively inhibits its binding to actin filaments58,59. Nevertheless, employment of KCl-stimulated synaptic terminals as an ex vivo model for increased actin polymerization indicates that our assay can also detect increases in F-actin levels.
In conclusion, we describe a robust time-efficient and high-throughput assay for analysis of actin filaments (F-actin) and its alternations in physiological and pathophysiological states suitable for a 96-well plate format. In combination with other existing methods for evaluation of F-actin in fixed and unfixed samples, the protocol will prove to be an essential tool in actin-related studies in the neuroscience field, as well as other areas of biological science research.
The authors have nothing to disclose.
This work was supported by the Neurological Foundation of New Zealand (1835-PG), the New Zealand Health Research Council (#16-597) and the Department of Anatomy, University of Otago, New Zealand. We are indebted to the Neurological Tissue Bank of HCB-IDIBAPS BioBank (Spain) for human brain tissues. We thank Jiaxian Zhang for her help in recording and editing of the video.
3.5 mL, open-top thickwall polycarbonate tube | Beckman Coulter | 349622 | For gradient centrifugation (synaptosome prep) |
Alexa Fluor 647 Phalloidin | Thermo Fisher Scientific | A22287 | F-actin specific ligand |
Antibody against b-actin | Santa Cruz Biotechnology | Sc-47778 | For evaluation of total actin levels by immunoblotting |
Antibody against GAPDH | Abcam | Ab181602 | For evaluation of GAPDH levels by immunoblotting |
Bio-Rad Protein Assay Dye Reagent Concentrate | Bio-Rad | 5000006 | Bradford based protein estimation |
Calcium chloride dihydrate (CaCl2·2H2O) | Sigma-Aldrich | C3306 | Krebs buffer component |
cOmplete, Mini, EDTA-free Protease Inhibitor Cocktail | Sigma-Aldrich | 4693159001 | For inhibition of endogenous protease activity during sample preparation |
Corning 96-well Clear Flat Bottom Polystyrene | Corning | 3596 | For light-scattering measurements |
D-(+)-Glucose | Sigma-Aldrich | G8270 | Krebs buffer component |
Dimethyl sulfoxide | Sigma-Aldrich | D5879 | Solvent for phalloidin and latrunculin A |
Fluorescent flatbed scanner (Odyssey Infrared Scanner) | Li-Cor Biosciences | For detection of immunoreactive signals on immunoblots | |
Glutaraldehyde solution (25% in water) Grade II | Sigma-Aldrich | G6257 | Fixative |
HEPES | Sigma-Aldrich | H3375 | Buffer ingredient for sample preparation and Krebs buffer component |
Latrunculin A | Sigma-Aldrich | L5163 | Depolymerizer of actin filaments |
Magnesium chloride hexahydrate (MgCl2·6H2O) | Sigma-Aldrich | M2670 | Krebs buffer component |
Microplates | |||
Mitex membrane filter 5 mm | Millipore | LSWP01300 | Preparation of synaptoneurosomes |
Nunc F96 MicroWell Black Plate | Thermo Fisher Scientific | 237105 | For fluorometric measurements |
Nylon net filter 100 mm | Millipore | NY1H02500 | Preparation of synaptoneurosomes |
Phosphatase Inhibitor Cocktail IV | Abcam | ab201115 | For inhibition of endogenous phosphatase activity during sample preparation |
Potassium chloride (KCl) | Sigma-Aldrich | P9541 | Krebs buffer component and for depolarization of synaptic terminals |
Potassium phosphate monobasic ((KH2PO4) | Sigma-Aldrich | P9791 | Krebs buffer component |
Sodium borohydride (NaBH4) | Sigma-Aldrich | 71320 | Component of Permeabilization buffer |
Sodium chloride (NaCl) | LabServ (Thermo Fisher Scientific) | BSPSL944 | Krebs buffer component |
Sodium hydrogen carbonate (NaHCO3) | LabServ (Thermo Fisher Scientific) | BSPSL900 | Krebs buffer component |
SpectraMax i3x | Molecular Devices | For fluorometric measurements | |
Sucrose | Fisher Chemical | S/8600/60 | Buffer ingredient for sample preparation |
Swimnex Filter Holder | Millipore | Sx0001300 | Preparation of synaptoneurosomes |
Tissue grinder 5 mL Potter-Elvehjem | Duran Wheaton Kimble | 358034 | For tissue homogenization |
Triton X-100 | Sigma-Aldrich | X100 | Component of Permeabilization buffer |
Trizma base | Sigma-Aldrich | T6066 | Buffer ingredient for sample preparation |