げっ歯類やヒト被験者の脳組織から 生き生きとした 生体試料中のアクチンフィラメントを定量化するための、シンプルで時間効率の高い高スループット蛍光分析ベースのアッセイを報告する。
細胞骨格の主要成分であるアクチンは、神経の構造および機能の維持において重要な役割を果たす。生理学的状態では、アクチンは、単量体球状(G-アクチン)および重合糸状(F-アクチン)の2つの形態で平衡状態で生じる。シナプス末端では、アクチン細胞骨格が重要なシナプス前およびシナプス後機能の基礎を形成する。さらに、アクチン重合状態の動的変化(球状と糸状のアクチン間の相互変換)は、シナプス構造および機能における可塑性関連の変化と密接に関連している。我々は、 エクスビボ 条件におけるアクチンの重合状態を評価するための修飾された蛍光ベースの方法論をここに報告する。このアッセイは、アクチンフィラメント(F-アクチン)に特異的に結合するファロトキシンである蛍光標識ファロイジンを採用し、重合糸状アクチンの直接尺度を提供する。原理の証明として、げっ歯類と死後のヒト脳組織ホモジナートの両方にアッセイの適合性の証拠を提供する。ラトランクリンA(アクチンフィラメントを非重合する薬剤)を用いて、F-アクチンレベルの変化をモニタリングする際のアッセイの有用性を確認する。また、我々は、高細胞外K+での脱分極による刺激時のアクチン重合の増加を確認する単離シナプス末端の生化学的分画にアッセイを拡張する。
細胞骨格タンパク質アクチンは、構造的なサポート、細胞輸送、細胞運動性および分裂を含む複数の細胞機能に関与している。アクチンは、単量体球状アクチン(G-アクチン)と重合糸状アクチン(F-アクチン)の2つの形態で平衡状態で発生する。アクチンの重合状態の急速な変化(G-とF-の間の相互変換)は、迅速なフィラメントアセンブリと分解をもたらし、細胞生理学におけるその調節の役割の根本となる。アクチンは神経細胞骨格構造の主要な構成要素を形成し、広範囲の神経機能1,2に影響を及ぼす。注目すべきは、アクチン細胞骨格はシナプス末端の構造プラットフォームの不可欠な部分を形成する。このように、シナプス形態形成および生理学の主要な決定要因であり、シナプス3、4、5のサイズ、数および形態の制御において基本的な役割を果たしている。特に、動的アクチン重合脱重は、記憶および学習プロセスの基礎となるシナプス可塑性に関連するシナプスリモデリングの重要な決定要因である。実際、シナプス前(例えば、神経伝達物質放出6、7、8、9、10)およびポストナプティック機能(可塑性関連動的リモデリング11、12、13、14など)の両方が、アクチン細胞骨格の重合状態の動的変化に大きく依存する。
生理学的条件下では、F-アクチンレベルは、翻訳後修飾4、15、16だけでなく、アクチン結合タンパク質(AMP)4、17を含むマルチモーダル経路を介して動的かつ緊密に調節される。AMPは、複数のレベルでアクチンダイナミクスに影響を与えることができ(例えば、重合の発芽または抑制、フィラメント分岐の誘導、フィラメントの小片への切断、脱重化の促進、脱重化からの保護など)、様々な細胞外および細胞内信号18、19、20に敏感な厳格な調節制御の下にある。複数のレベルでのこのような調節チェックは、シナプス細胞骨格におけるアクチンダイナミクスの厳格な調節を指示し、基底および活動誘発状態の両方で神経生理学の前および後のナプティックな側面を微調整する。
神経生理学におけるアクチンの重要な役割を考えると、神経変性、心理疾患、神経発達疾患3、21、22、23、24、25、26、27を含む神経疾患の広い範囲に関連する重要な病原性事象として、アクチンダイナミクスの変化の証拠を提供したいくつかの研究が驚くべきことではない。しかし、神経生理学や病態生理学におけるアクチンの重要な役割を指摘する豊富な研究データにもかかわらず、アクチンダイナミクス、特にシナプス細胞骨格の理解には依然として大きなギャップが残っています。より多くの研究は、病理学的条件下での神経アクチンとその変化のより良い理解を持っている必要があります。.この文脈における主な焦点領域の1つは、アクチン重合状態の評価である。ウエスタンブロッティングベースの商用キット(G-アクチン/F-アクチン in vivoアッセイ生化学キット;細胞骨格SKU BK03728,29)及びF-アクチンレベル6の評価のための自家製アッセイ。しかし、これらはF-アクチンとG-アクチンの生化学的分離を必要とし、その後の定量化は免疫ブロッティングプロトコルに基づいているため、時間がかかる可能性があります。我々は、F-アクチンの基底レベルの両方を評価するために使用できる修飾を用いて、以前の研究30から適応した蛍光分光法ベースのアッセイと、その組立分解の動的変化を報告する。特に、1 mLキュベットに適したサンプルを必要とするオリジナルのプロトコルを、現在の96ウェルプレート形式に効率的に変更しました。したがって、改質されたプロトコルは、アッセイに必要な組織/サンプル量を大幅に減少させました。また、このプロトコルは、脳組織の均質化だけでなく、単離シナプス末端(シナプトソームおよびシナプトニューロソーム)などの細胞内分画にも適しているという証拠を提供する。最後に、このアッセイは、解剖されたばかりのげっ歯類の脳組織と長期保存された死後のヒト脳サンプルに使用することができる。注意すべきは、アッセイは神経細胞の文脈において提示されるが、それらに関連する他の細胞型および生理学的プロセスに好適に拡張することができる。
ここで説明するアッセイは、本質的に改変を伴う以前の研究30から適応し、ファロトキシン、ファロイジンを蛍光標識でタグ付けして採用する。蛍光ファロイジンアナログは、固定組織47、48、49におけるアクチンフィラメントの染色に関するゴールドスタンダードであると考えられている。実際、それら?…
The authors have nothing to disclose.
この研究は、ニュージーランド神経学財団(1835-PG)、ニュージーランド保健研究評議会(#16-597)、ニュージーランドのオタゴ大学解剖学学科によって支援されました。私たちは、人間の脳組織のためのHCB-IDIBAPSバイオバンク(スペイン)の神経組織銀行にお世話になっています。私たちは、ビデオの記録と編集で彼女の助けをしてくれたジアシアン・ザンに感謝します。
3.5 mL, open-top thickwall polycarbonate tube | Beckman Coulter | 349622 | For gradient centrifugation (synaptosome prep) |
Alexa Fluor 647 Phalloidin | Thermo Fisher Scientific | A22287 | F-actin specific ligand |
Antibody against b-actin | Santa Cruz Biotechnology | Sc-47778 | For evaluation of total actin levels by immunoblotting |
Antibody against GAPDH | Abcam | Ab181602 | For evaluation of GAPDH levels by immunoblotting |
Bio-Rad Protein Assay Dye Reagent Concentrate | Bio-Rad | 5000006 | Bradford based protein estimation |
Calcium chloride dihydrate (CaCl2·2H2O) | Sigma-Aldrich | C3306 | Krebs buffer component |
cOmplete, Mini, EDTA-free Protease Inhibitor Cocktail | Sigma-Aldrich | 4693159001 | For inhibition of endogenous protease activity during sample preparation |
Corning 96-well Clear Flat Bottom Polystyrene | Corning | 3596 | For light-scattering measurements |
D-(+)-Glucose | Sigma-Aldrich | G8270 | Krebs buffer component |
Dimethyl sulfoxide | Sigma-Aldrich | D5879 | Solvent for phalloidin and latrunculin A |
Fluorescent flatbed scanner (Odyssey Infrared Scanner) | Li-Cor Biosciences | For detection of immunoreactive signals on immunoblots | |
Glutaraldehyde solution (25% in water) Grade II | Sigma-Aldrich | G6257 | Fixative |
HEPES | Sigma-Aldrich | H3375 | Buffer ingredient for sample preparation and Krebs buffer component |
Latrunculin A | Sigma-Aldrich | L5163 | Depolymerizer of actin filaments |
Magnesium chloride hexahydrate (MgCl2·6H2O) | Sigma-Aldrich | M2670 | Krebs buffer component |
Microplates | |||
Mitex membrane filter 5 mm | Millipore | LSWP01300 | Preparation of synaptoneurosomes |
Nunc F96 MicroWell Black Plate | Thermo Fisher Scientific | 237105 | For fluorometric measurements |
Nylon net filter 100 mm | Millipore | NY1H02500 | Preparation of synaptoneurosomes |
Phosphatase Inhibitor Cocktail IV | Abcam | ab201115 | For inhibition of endogenous phosphatase activity during sample preparation |
Potassium chloride (KCl) | Sigma-Aldrich | P9541 | Krebs buffer component and for depolarization of synaptic terminals |
Potassium phosphate monobasic ((KH2PO4) | Sigma-Aldrich | P9791 | Krebs buffer component |
Sodium borohydride (NaBH4) | Sigma-Aldrich | 71320 | Component of Permeabilization buffer |
Sodium chloride (NaCl) | LabServ (Thermo Fisher Scientific) | BSPSL944 | Krebs buffer component |
Sodium hydrogen carbonate (NaHCO3) | LabServ (Thermo Fisher Scientific) | BSPSL900 | Krebs buffer component |
SpectraMax i3x | Molecular Devices | For fluorometric measurements | |
Sucrose | Fisher Chemical | S/8600/60 | Buffer ingredient for sample preparation |
Swimnex Filter Holder | Millipore | Sx0001300 | Preparation of synaptoneurosomes |
Tissue grinder 5 mL Potter-Elvehjem | Duran Wheaton Kimble | 358034 | For tissue homogenization |
Triton X-100 | Sigma-Aldrich | X100 | Component of Permeabilization buffer |
Trizma base | Sigma-Aldrich | T6066 | Buffer ingredient for sample preparation |