A murine model for myocardial ischemia and ischemic preconditioning is an important tool study cardioprotective mechanisms in vivo. Here, we report an easy applicable in situ model for cardiac IP using a hanging-weight system for coronary artery occlusion.
Murine studies of acute injury are an area of intense investigation, as knockout mice for different genes are becoming increasingly available 1-38. Cardioprotection by ischemic preconditioning (IP) remains an area of intense investigation. To further elucidate its molecular basis, the use of knockout mouse studies is particularly important 7, 14, 30, 39. Despite the fact that previous studies have already successfully performed cardiac ischemia and reperfusion in mice, this model is technically very challenging. Particularly, visual identification of the coronary artery, placement of the suture around the vessel and coronary occlusion by tying off the vessel with a supported knot is technically difficult. In addition, re-opening the knot for intermittent reperfusion of the coronary artery during IP without causing surgical trauma adds additional challenge. Moreover, if the knot is not tied down strong enough, inadvertent reperfusion due to imperfect occlusion of the coronary may affect the results. In fact, this can easily occur due to the movement of the beating heart.
Based on potential problems associated with using a knotted coronary occlusion system, we adopted a previously published model of chronic cardiomyopathy based on a hanging weight system for intermittent coronary artery occlusion during IP 39. In fact, coronary artery occlusion can thus be achieved without having to occlude the coronary by a knot. Moreover, reperfusion of the vessel can be easily achieved by supporting the hanging weights which are in a remote localization from cardiac tissues.
We tested this system systematically, including variation of ischemia and reperfusion times, preconditioning regiments, body temperature and genetic backgrounds39. In addition to infarct staining, we tested cardiac troponin I (cTnI) as a marker of myocardial infarction in this model. In fact, plasma levels of cTnI correlated with infarct sizes (R2=0.8). Finally, we could show in several studies that this technique yields highly reproducible infarct sizes during murine IP and myocardial infarction6, 8, 30, 40, 41. Therefore, this technique may be helpful for researchers who pursue molecular mechanisms involved in cardioprotection by IP using a genetic approach in mice with targeted gene deletion. Further studies on cardiac IP using transgenic mice may consider this technique.
General remarks:
All operations should be performed under an upright dissecting microscope (Olympus, SZX10 with Z-Axis Crank Post with STU2 StandBoom Stand) and using a surgical coagulator. Ventilation is critical for the procedure and therefore a certain amount of time should be spent on choosing the ventilator and optimizing the ventilation technique. Temperature, blood pressure and anesthesia should be stable throughout.
1. Anesthesia, Intubation and Monitoring
2. Technique of Coronary Artery Occlusion
3. Determination of the Area At Risk (AAR) and Myocardial Infarct Size
After induction of a myocardial infarct (with or without IP), the area is perfused by the LCA (area at risk, AAR) and the size of the infarct itself will be determined using a staining technique. Subsequently, infarct will then be calculated as percentage of myocardial infarction compared to the AAR. To do this, a previously described double staining technique with Evan’s blue and triphenyltetrazolium chloride (TTC) is used 44.
4. Cardiac Enzyme Measurement
Due to limitations associated with TTC staining we recommend as additional readout for myocardial infarct severity the determination of cardiac troponin I (cTnI) levels in the serum of mice. The blood will be obtained from the portal vein and serum cTnI levels are then determined with a quantitative rapid cTnI assay(Life Diagnostics, Inc., West Chester, PA, USA).
5. Representative Results:
Figure 1. (A) Model of cardiac IP using a hanging-weight system of coronary occlusion. This technique does not require a knot for coronary occlusion. (B, C) Surgical setup. (D) Image of a murine heart with the left coronary artery (LCA, arrows) after occlusion. Visual identification of the LCA is necessary for ligation and ischemic preconditioning in mice. An 8.0 nylon suture is placed around the LCA 1-2 mm beneath the left auricle. The suture is threaded through a small plastic tube (*).The end of each suture is attached to a small weight (1g) and the suture is placed over rods on both sides. (E) Determination of the AAR after LCA occlusion and retrograde injection of Evan’s blue dye into the aorta. The AAR remains unstained while the rest of the myocardium is blue. After incubation of AAR tissue with TTC, the infarcted area stained white, while viable tissue stained red.
The present study describes a novel technique of performing IP in an intact murine model using a hanging-weight system and thus avoiding coronary artery occlusion by a knot. In fact, this study demonstrates highly reproducible infarct sizes and cardiac protection by IP, thus minimizing the variability associated with knot-based coronary occlusion models. Investigators who consider studying cardioprotection by IP in mice may benefit from this model.
The authors have nothing to disclose.
The present studies are supported by National Heart, Lung, and Blood Institute Grant R01-HL0921, R01-DK083385 and R01-HL098294 to H. K. Eltzschig, the 1K08HL102267-01 to T. Eckle, and Foundation for Anesthesia Education and Research Grants to T. Eckle and H. K. Eltzschig, and American Heart Association Grant to T. Eckle and H. K. Eltzschig and a Deutsche Forschungsgemeinschaft (DFG) research fellowship to M. Koeppen. We thank Shelley Eltzschig for the art work.
Material Name | タイプ | Company | Catalogue Number | Comment |
---|---|---|---|---|
Sodium Pentobarbital (Fatal Plus) | Vortech Pharmaceutical Ls, Ltd | V.P.L. 9372 | 4mg/mL in saline | |
TTC | Sigma | 17779 Fluka | 1.5 % in PBS | |
Evans Blue | Sigma | E2129 | 10g in 1 L PBS | |
Insyte 22 G | Beckton Dickinson | n/a | ||
Suture, silk 4.0 | Harvard Apparatus | 517698 | ||
Suture, Prolene 8.0 | Ethicon, USA | M8739 | reusable | |
Heart Matrix | Zivic Instruments | # HSMS001 | ||
Siemens 900 C | DRE Veterinary, USA | # 336 | refurbished | |
dissecting microscope (SZX10 ) | Olympus | n/a | consider generous working distance | |
Heating Table | Rt, Effenberger, Germany | n/a | only and single provider | |
Blood pressure device | Cyber Sense, Inc | BPM02 | ||
I STAT | Abbott | n/a |