Summary

在细胞堆中生产腺相关病毒载体,用于大型动物模型的临床前研究

Published: June 30, 2021
doi:

Summary

在这里,我们提供了使用在细胞堆叠中生长的贴壁HEK 293细胞和亲和色谱纯化大规模生产研究级AAV载体的详细程序。该方案始终如一地产生>1 x 1013 个载体基因组/ mL,提供适合大型动物研究的载体量。

Abstract

腺相关病毒(AAV)载体是临床上最先进的基因治疗载体之一,有三种AAV基因疗法被批准用于人类。AAV新应用的临床进展涉及从小动物模型(如小鼠)过渡到较大的动物模型,包括狗,绵羊和非人类灵长类动物。对大型动物施用AAV的局限性之一是需要大量高滴度病毒。虽然悬浮细胞培养是AAV载体生产的可扩展方法,但很少有研究实验室拥有设备(例如,生物反应器)或知道如何以这种方式生产AAV。此外,与贴壁HEK293细胞相比,在悬浮HEK 293细胞中产生AAV滴度通常显着降低。这里描述的是一种使用细胞堆栈生产大量高滴度AAV的方法。还描述了用于滴定AAV的详细方案以及验证载体纯度的方法。最后,介绍了AAV介导的转基因表达在绵羊模型中的代表性结果。这种用于在贴壁细胞中大规模生产AAV载体的优化方案将使分子生物学实验室能够在更大的动物模型中推进其新型AAV疗法的测试。

Introduction

利用腺相关病毒(AAV)载体的基因治疗在过去三十年中取得了巨大的进步1,2。在各种遗传疾病(包括先天性失明,血友病以及肌肉骨骼和中枢神经系统疾病)中表现出的改善,使AAV基因治疗成为临床研究的前沿3,4。2012年,欧洲药品管理局(EMA)批准了Glybera,一种表达脂蛋白脂肪酶(LPL)的AAV1载体,用于治疗LPL缺乏症,使其成为欧洲或美国基因治疗的首个上市授权5。从那时起,另外两种AAV基因疗法Luxturna6和Zolgensma7已获得FDA批准,预计到2025年,市场将迅速扩大,预计到2025年将有多达10-20种基因疗法8。现有的临床数据表明,AAV基因治疗是一种安全、耐受性良好且有效的方法,使其成为最有前途的病毒载体之一,超过244项涉及AAV的临床试验已 ClinicalTrials.gov 注册。对涉及AAV载体的临床应用的兴趣日益增加,需要强大且可扩展的生产方法来促进大型动物模型中AAV疗法的评估,因为这是转化管道中的关键步骤9

对于AAV载体生产,两个主要要求是AAV基因组和衣壳。野生型(wt)-AAV的基因组是单链DNA,长度约为4.7 kb10。wt-AAV基因组包括在基因组两端发现的倒置末端重复序列(ITR),这对包装很重要,并且repcap基因11。基因组复制,病毒衣壳组装以及将基因组封装到病毒衣壳中所必需的rep和cap基因从病毒基因组中移除并以反式形式提供用于AAV载体生产12。从病毒基因组中去除这些基因为治疗性转基因和所有必要的调节元件(包括启动子和polyA信号)提供了空间。ITR保留在载体基因组中,以确保适当的基因组复制和病毒封装13,14。为了改善转基因表达的动力学,可以将AAV载体基因组设计为自互补,这减轻了AAV基因组复制期间从单链DNA转换到双链DNA转换的需求,但将编码能力降低到〜2.4 kb15。

除了AAV基因组设计之外,衣壳血清型选择还决定了体内AAV载体2的组织和细胞向性。除了组织向性外,不同的AAV血清型已被证明可以显示不同的基因表达动力学16。例如,Zincarelli等人17将不同的AAV血清型分为低表达血清型(AAV2,3,4,5),中等表达血清型(AAV1,6,8)和高表达血清型(AAV7和9)。他们还将AAV血清型分为慢发表达(AAV2,3,4,5)或快速发作表达(AAV1,6,7,8和9)。这些不同的趋向性和基因表达动力学是由于衣壳蛋白中的氨基酸变异,衣壳蛋白的形成以及与宿主细胞受体/共受体的相互作用18。一些AAV衣壳具有额外的有益特征,例如在血管内给药(AAV9)后穿过血脑屏障的能力或驻留在长寿的肌肉细胞中以持久转基因表达(AAV6,6.2FF,8和9)19,20。

本文旨在详细介绍一种生产高纯度、高滴度、研究级AAV载体的具有成本效益的方法,用于临床前大型动物模型。使用该协议生产AAV是使用双质粒转染到在细胞堆叠中生长的贴壁人胚胎肾(HEK)293细胞来实现的。此外,该研究描述了硫酸肝素亲和色谱纯化的方案,可用于含有肝素结合结构域的AAV血清型,包括AAV2,3,6,6.2FF,13和DJ21,22。

许多包装系统可用于生产AAV载体。其中,使用双质粒共转染系统,其中RepCap基因以及Ad辅助基因(E1A,E1B55K,E2A,E4orf6和VA RNA)包含在一个质粒(pHelper)中,与常见的三质粒(三重)转染方法相比具有一些实际优势,包括降低质粒生产成本23,24.含有转基因表达盒(pTransgene)的AAV基因组质粒必须由ITR两侧放置,并且长度不得超过约4.7 kb。由于转染过程中潜在的细胞毒性作用,载体滴度和纯度可能受到转基因的影响。本文描述了载体纯度的评估。在小鼠,仓鼠和绵羊动物模型中评估使用该方法生产的载体,每个载体产生1 x10 13 vg / mL。

表1:所需溶液的组成。整个协议中各种解决方案所需组件的必要信息,包括百分比和体积。 请点击此处下载此表格。

Protocol

1. 细胞堆中HEK293细胞的双质粒转染 在设置为37°C的珠浴中解冻HEK293细胞的冷冻小瓶。注意:在电芯解冻时将完整的DMEM预热至37°C,以确保电镀时冷温不会冲击电芯。确保细胞具有较低的传代数,理想情况下小于20,以确保最佳生长和转染效率。确保细胞被认证为无支原体。 将冷冻小瓶的内容物滴入含有10 mL预热完全DMEM的15 mL锥形管中,并以500×g离心细胞5分钟。 吸?…

Representative Results

从小型啮齿动物模型到大型动物模型的转换以及最终的临床应用提出了重大挑战,因为需要大量的AAV来转导大型动物并达到治疗效果。为了比较合理设计的AAV6.2FF衣壳的转导效率,先前证明与AAV63相比,小鼠肌细胞的转导效率提高了101倍,小鼠,仓鼠和羔羊都给予AAV6.2FF表达人单克隆抗体(hIgG)。AAV6.2FF-hIgG表达载体含有CASI启动子4、伍德查克肝炎病毒转录后调节…

Discussion

本文中描述的重组AAV(rAAV)载体的生产使用大多数分子生物学研究实验室和设施中发现的常见材料,试剂和设备。该论文允许阅读器产生高质量的 体外体内 级rAAV。最重要的是,与涉及氯化铯纯化的更繁琐的方案相比,这种用于rAAV生产的方案是有效的,并且避免了使用超速离心。一旦HEK293细胞被转染,纯化的AAV就可以在5个工作日内使用。

在rAAV生产和纯化?…

Divulgaciones

The authors have nothing to disclose.

Acknowledgements

Amira D. Rghei,Brenna A. Y. Stevens,Sylvia P. Thomas和Jacob G. E. Yates是安大略省兽医学院学生津贴以及安大略省研究生奖学金的获得者。Amira D. Rghei是Mitacs Accelerate Studentship的获得者。这项工作由加拿大卫生研究院(CIHR)项目赠款(#66009)和SKW的合作健康研究项目(NSERC合作)赠款(#433339)资助。

Materials

0.22 μm filter Millipore Sigma S2GPU05RE
0.25% Trypsin Fisher Scientific SM2001C
1-Butanol Thermo Fisher Scientific A399-4 CAUTION. Use under a laminar flow hood. Wear gloves
10 chamber cellstack Corning 3271
1L PETG bottle Thermo Fisher Scientific 2019-1000
30% Acrylamide/Bis Solution Bio-Rad 1610158
96-well skirted plate FroggaBio FS-96
Adhesive plate seals Thermo Fisher Scientific 08-408-240
Ammonium persulfate (APS) Bio-Rad 161-0700 CAUTION. Use under a laminar flow hood. Wear gloves
Blood and Tissue Clean up Kit Qiagen 69506 Use for DNA clean up in section 4.6 of protocol
Bromophenol blue Fisher Scientific B392-5 CAUTION. Use under a laminar flow hood. Wear gloves
Cell Culture Dishes Greiner bio-one 7000232 15 cm plates
Culture Conical Tube Thermo Fisher Scientific 339650 15 mL conical tube
Culture Conical Tube Fisher Scientific 14955240 50 mL conical tube
Dulbecco's Modified Eagle Medium (DMEM) with 1000 mg/L D-glucose, L-glutamine Cytiva Life Sciences SH30022.01
ECL Western Blotting Substrate Thermo Fisher Scientific 32209
Ethanol Greenfield P016EA95 Dilute ethyl alcohol(95% vol) to 20% for section 3.7.4 and 70% for section 6.1.1.1
Fetal Bovine Serum (FBS) Thermo Fisher Scientific SH30396.03
Glacial acetic acid Fisher Scientific A38-500 CAUTION. Use under a laminar flow hood. Wear gloves
Glycerol Fisher Scientific BP229-1
Glycine Fisher Scientific BP381-500
HBSS with Mg2+ and Ca2+ Thermo Fisher Scientific SH302268.02
HBSS without Mg2+ and Ca2+ Thermo Fisher Scientific SH30588.02
HEK293 cells American Tissue Culture Collection CRL-1573 Upon receipt, thaw the cells and culture as described in manufacturer’s protocol. Once cells have been minimally passaged and are growing well, freeze a subfraction for future in aliquots and store in liquid nitrogen. Always use cells below passage number 30. Once cultured cells have been passaged more than 30 times, it is recommended to restart a culture from the stored aliquots
HEK293 host cell protein ELISA kit Cygnus Technologies F650S Follow manufacturer’s instructions
Heparin sulfate column Cytiva Life Sciences 17040703
Kimwipe Thermo Fisher Scientific KC34120
 L-glutamine (200 mM) Thermo Fisher Scientific SH30034.02
Large Volume Centrifuge Tube Support Cushion Corning CLS431124 Support cushion must be used with large volume centrifuge tubes uless the centrifuge rotor has the approriate V-bottom cushions
Large Volume Centrifuge Tubes Corning CLS431123-6EA 500 mL centrifuge tubes
MgCl Thermo Fisher Scientific 7791-18-6
Microcentrifuge tube Fisher Scientific 05-408-129 1.5 mL microcentrifuge tube, sterilize prior to use
Molecular Grade Water Cytiva Life Sciences SH30538.03
N-Lauroylsarcosine sodium salt Sigma Aldrich L5125 CAUTION. Wear gloves
NaCl Thermo Fisher Scientific BP35810
Optimem, reduced serum medium Thermo Fisher Scientific 31985070
Pasteur pipets Fisher Scientific 13-678-20D Sterilize prior to use
PBS (10x) Thermo Fisher Scientific 70011044 Dilute to 1x for use on cells
Penicillin-Streptomycin Solution Cytiva Life Sciences SV30010
pHelper plasmid De novo design or obtained from plasmid repository NA
Pipet basin Thermo Fisher Scientific 13-681-502 Purchase sterile pipet basins
Polyethylene glycol tert-octylphenyl ether (Triton X-100) Thermo Fisher Scientific 9002-93-1 CAUTION. Wear gloves
Polyethylenimine (PEI) Polyscience 24765-1 Follow manufacturer’s instructions to produce a 1L solution. 0.22μm filter and store at 4°C
Polypropylene semi-skirted PCR Plate FroggaBio WS-96
Polysorbate 20 (Tween 20) Thermo Fisher Scientific BP337-100 CAUTION. Wear gloves
polyvinylidene difluoride (PVDF) membrane Cytiva Life Sciences 10600023 Use forceps to manipulate. Wear gloves.
Primary antibody Progen 65158
Protein Ladder FroggaBio PM008-0500
Proteinase K Thermo Fisher Scientific AM2546
pTrangene plasmid De novo design or obtained from plasmid repository NA Must contain SV40 polyA in genome to be compatible with AAV titration in section 5.0
Pump tubing Cole-Parmer RK-96440-14 Optimize length of tubing and containment of virus in fractions E1-E5
RQ1 Dnase 10 Reaction Buffer Promega M6101 Use at 10x concentration in protocol from section 4.0
RQ1 Rnase-free Dnase Promega M6101
Sample dilutent Cygnus Technologies I700 Must be purchased separately for use with HEK293 host cell protein ELISA kit
Secondary antibody, HRP Thermo Fisher Scientific G-21040
Skim milk powder Oxoid LP0033B
Sodium dodecyl sulfate (SDS) Thermo Fisher Scientific 28312 CAUTION. Use under a laminar flow hood. Wear gloves
Sodium hydroxide (NaOH) Thermo Fisher Scientific SS266-4
SV40 polyA primer probe IDT Use sequence in Table X for quote from IDT for synthesis
Tetramethylethylenediamine (TEMED) Thermo Fisher Scientific 15524010 CAUTION. Use under a laminar flow hood. Wear gloves
Tris Base Fisher Scientific BP152-5
Trypan blue Bio-Rad 1450021
Ultra-Filter Millipore Sigma UFC810024 Ultra-4 Centrifugal 10K device must be used, as it has a 10000 molecular weight cutoff
Universal Nuclease for cell lysis Thermo Fisher Scientific 88702
Universal qPCR master mix NEB M3003L
Whatman Paper Millipore Sigma WHA1001325
β-mercaptoethanol Fisher Scientific 21985023 CAUTION. Use under a laminar flow hood. Wear gloves
CAUTION: Refer to the Materials Table for guidelines on the use of dangerous chemicals.

Referencias

  1. Hastie, E., Samulski, R. J. Adeno-associated virus at 50: A golden anniversary of discovery, research, and gene therapy success-a personal perspective. Human Gene Therapy. 26 (5), 257-265 (2015).
  2. Wang, D., Tai, P. W. L., Gao, G. Adeno-associated virus vector as a platform for gene therapy delivery. Nature Reviews Drug Discovery. 18 (5), 358-378 (2019).
  3. Nathwani, A. C., et al. Long-term safety and efficacy of factor IX gene therapy in hemophilia B. The New England Journal of Medicine. 371 (21), 1994-2004 (2014).
  4. Kuzmin, D. A., et al. The clinical landscape for AAV gene therapies. Nature Reviews Drug Discovery. 20 (3), 173-174 (2021).
  5. Ylä-Herttuala, S. Endgame: glybera finally recommended for approval as the first gene therapy drug in the European union. Molecular Therapy: The Journal of the American Society of Gene Therapy. 20 (10), 1831-1832 (2012).
  6. FDA approves novel gene therapy to treat patients with a rare form of inherited vision loss. FDA News Release. FDA Available from: https://www.fda.gov/news-events/press-announcements/fda-approves-novel-gene-therapy-treat-patients-rare-form-inherited-vision-loss (2020)
  7. FDA approves innovative gene therapy to treat pediatric patients with spinal muscular atrophy, a rare disease and leading genetic cause of infant mortality. FDA News Release. FDA Available from: https://www.fda.gov/news-events/press-announcements/fda-approves-innovative-gene-therapy-treat-pediatric-patients-spinal-muscular-atrophy-rare-disease (2020)
  8. Statement from FDA Commissioner Scott Gottlieb, MD and Peter Marks, MD Ph.D., Director of the Center for Biologics Evaluation and Research on new policies to advance development of safe and effective cell and gene therapies. FDA Available from: https://www.fda.gov/news-events/press-announcements/statement-fda-commissioner-scott-gottlieb-md-and-peter-marks-md-phd-director-center-biologics (2020)
  9. Asokan, A., Schaffer, D. V., Samulski, R. J. The AAV vector toolkit: poised at the clinical crossroads. Molecular Therapy: The Journal of the American Society of Gene Therapy. 20 (4), 699-708 (2012).
  10. Rose, J. A., Hoggan, M. D., Shatkin, A. J. Nucleic acid from an adeno-associated virus: chemical and physical studies. Proceedings of the National Academy of Sciences of the United States of America. 56 (1), 86-92 (1966).
  11. Lusby, E., Fife, K. H., Berns, K. I. Nucleotide sequence of the inverted terminal repetition in adeno-associated virus DNA. Journal of Virology. 34 (2), 402-409 (1980).
  12. Masat, E., Pavani, G., Mingozzi, F. Humoral immunity to AAV vectors in gene therapy: challenges and potential solutions. Discovery Medicine. 15 (85), 379-389 (2013).
  13. Ling, C. Enhanced Transgene Expression from Recombinant Single-Stranded D-Sequence-Substituted Adeno-Associated Virus Vectors in Human Cell Lines In Vitro and in Murine Hepatocytes In Vivo. Journal of Virology. 89 (2), 952-961 (2014).
  14. Cathomen, T., Stracker, T. H., Gilbert, L. B., Weitzman, M. D. A genetic screen identifies a cellular regulator of adeno-associated virus. Proceedings of the National Academy of Sciences of the United States of America. 98 (26), 14991-14996 (2001).
  15. McCarty, D. M. Self-complementary AAV vectors; advances and applications. Molecular Therapy. 16 (10), 1648-1656 (2008).
  16. Aschauer, D. F., Kreuz, S., Rumpel, S. Analysis of transduction efficiency, tropism and axonal transport of aav serotypes 1, 2, 5, 6, 8 and 9 in the mouse brain. PLOS One. 8 (9), 76310 (2013).
  17. Zincarelli, C., Soltys, S., Rengo, G., Rabinowitz, J. E. Analysis of AAV serotypes 1-9 mediated gene expression and tropism in mice after systemic injection. Molecular Therapy. 16 (6), 1073-1080 (2008).
  18. Pillay, S., et al. Adeno-associated virus (AAV) serotypes have distinctive interactions with domains of the cellular AAV receptor. Journal of Virology. 91 (18), (2017).
  19. Merkel, S. F. Trafficking of adeno-associated virus vectors across a model of the blood-brain barrier; a comparative study of transcytosis and transduction using primary human brain endothelial cells. Journal of Neurochemistry. 140 (2), 216-230 (2017).
  20. van Lieshout, L. P., et al. A novel triple-mutant AAV6 capsid induces rapid and potent transgene expression in the muscle and respiratory tract of mice. Molecular Therapy. Methods & Clinical Development. 9, 323-329 (2018).
  21. Wu, Z., Asokan, A., Grieger, J. C., Govindasamy, L., Agbandje-McKenna, M., Samulski, R. J. single amino acid changes can influence titer, heparin binding, and tissue tropism in different adeno-associated virus serotypes. Journal of Virology. 80 (22), 11393-11397 (2006).
  22. Liu, J., Moon, Y. -. A. Simple purification of adeno-associated virus-DJ for liver-specific gene expression. Yonsei Medical Journal. 57 (3), 790-794 (2016).
  23. Grimm, D., Kern, A., Rittner, K., Kleinschmidt, J. A. Novel tools for production and purification of recombinant adeno-associated virus vectors. Human Gene Therapy. 9 (18), 2745-2760 (1998).
  24. Kimura, T., et al. Production of adeno-associated virus vectors for in vitro and in vivo applications. Scientific Reports. 9 (1), 13601 (2019).
  25. Aurnhammer, C., et al. Universal real-time PCR for the detection and quantification of adeno-associated virus serotype 2-derived inverted terminal repeat sequences. Human Gene Therapy Methods. 23 (1), 18-28 (2012).
  26. . Paramyxoviridae: The viruses and their replication. Fields Virology Available from: https://www.scholars.northwestern.edu/en/publications/paramyxoviridae-the-viruses-and-their-replication (1996)
  27. Boussif, O., et al. A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: polyethylenimine. Proceedings of the National Academy of Sciences of the United States of America. 92 (16), 7297-7301 (1995).
  28. Kaludov, N., Brown, K. E., Walters, R. W., Zabner, J., Chiorini, J. A. Adeno-associated virus serotype 4 (AAV4) and AAV5 Both require sialic acid binding for hemagglutination and efficient transduction but differ in sialic acid linkage specificity. Journal of Virology. 75 (15), 6884-6893 (2001).
  29. Burnham, B., et al. Analytical ultracentrifugation as an approach to characterize recombinant adeno-associated viral vectors. Human Gene Therapy Methods. 26 (6), 228-242 (2015).
  30. Dobnik, D., et al. Accurate quantification and characterization of adeno-associated viral vectors. Frontiers in Microbiology. 10, 1570 (2019).
  31. Backovic, A., et al. Capsid protein expression and adeno-associated virus like particles assembly in Saccharomyces cerevisiae. Microbial Cell Factories. 11, 124 (2012).

Play Video

Citar este artículo
Rghei, A. D., Stevens, B. A. Y., Thomas, S. P., Yates, J. G. E., McLeod, B. M., Karimi, K., Susta, L., Bridle, B. W., Wootton, S. K. Production of Adeno-Associated Virus Vectors in Cell Stacks for Preclinical Studies in Large Animal Models. J. Vis. Exp. (172), e62727, doi:10.3791/62727 (2021).

View Video